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Introduction 1

1 Introduction

RAISE (Rigorous Approach to Industrial Software Engineering) was originally developed during 1985-
90 by a European collaborative project in the ESPRIT-I programme involving four companies, two
in Denmark and two in the UK. A second project, LaCoS (Large-scale Correct Systems using Formal
Methods) was a continuation ESPRIT-II project (1990-95) involving nine companies in seven European
countries. LaCoS further developed the RAISE technology, particularly the method and tools [1], and
tested RAISE on a wide range of software development projects [2].

The RAISE Specification Language (RSL) is a formal specification language, i.e. a language with a formal,
mathematical basis [3, 4, 5] intended to support the precise definition of software requirements and reliable
development from such definitions to executable implementations. Particular aims of the language were
to support large, modular specifications, to provide a range of specification styles (axiomatic and model-
based; applicative and imperative; sequential and concurrent), and to support specifications ranging from
abstract (close to requirements) to concrete (close to implementations).

In this paper we provide an introduction to the RAISE Specification Language and to the RAISE method.
Complete information can be found in the books on RSL [6] and the method [5].

There were a few minor changes made to RSL between the RSL book and the method book, and we
follow the latter. We also include a few extensions to RSL that have been introduced since the method
book was published, and that are supported by the tools available from UNU/IIST [7].

2 The RAISE Specification Language

The RAISE Specification Language (RSL) is a modular language. Specifications are in general collections
of (related) modules. There are two kinds of modules: schemes and objects. Schemes are (possibly
parameterised) class ezpressions, and objects are instances of classes. We return to schemes and objects
later in Sections 2.10, 2.11, and 2.12. For now, if you have an intuition about classes and objects in
object-oriented programming languages, then this intuition largely carries over into RSL.

2.1 Basic Class Expressions

There are several ways of making class expressions, but the most common is the basic class expression
that consists of the keywords class and end around some declarations of various kinds. Each declaration
is a keyword followed by one or more definitions of the appropriate kind (Table 1).

No declarations are compulsory: many classes just contain type and value declarations. The order in the
table is a common one to use, but any order is allowed, and there may be more than one occurrence of a
kind of declaration.
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The RAISE Specification Language 2

Table 1: Declarations and their definitions.

Declaration | Kind of definition

object Embedded modules

type Types

value Values: constants and functions

variable Variables that may store values

channel Channels for input and output

axiom Axioms: logical properties that must always hold

test_case Test cases: expressions to be evaluated by a translator or interpreter

2.2 Types

RSL, like most specification and also programming languages, is a typed language. That is, it must be
possible to associate each occurrence of an identifier representing a value, variable or channel with a
unique type, and to check that the occurrence of the identifier is consistent with a collection of typing
rules. Such rules, such as that typically prohibiting expressions like “1 + true”, are well known from
programming languages and we will not describe them further here.

2.2.1 Built-in types

In order to be able to define the types of values etc. we need a collection of types to use. RSL has seven
built-in types (Table 2), and a number of ways of constructing other types from these.

Table 2: Built-in types.

Type Example values Operators
Bool true, false N, V, = ~
Int -1, 0,1, ... +, =% /,\, T, <, <, >, >, abs, real
Nat 0,1, .. Same as for Int
Real | ...,-43,...,0.0, ... +, =%/, 1, <, <, >, >, abs, int
Char al, ...
Text "oMplice”, ... As for lists of Char
Unit O

Equality = and inequality # are also defined for all types.

Technically, the operators for Bool are properly referred to as connectives. They differ from operators
in that a “lazy” or “conditional” evaluation is used for them: see Section 2.4. ~ is negation. There is no
need for &< as it would be the same as =.

Nat is a subtype of Int: all Nat values are also Int values. The operators are mostly conventional: / for
Int is integer division, and \ is remainder. 1 for both Int and Real is exponentiation; abs for both Int
and Real gives the absolute value. Int is not a subtype of Real: the operator real converts from Int to
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The RAISE Specification Language 3

Real, and the operator int from Real to Int, truncating towards zero.

Unit is a type with just one value “()”, also written as skip. It is used mainly in imperative and
concurrent specifications to provide a parameter type for functions that do not need parameters, and to
provide a return type for functions that do not return values.

The operators and other symbols used to construct value expressions (which we will see later in this

paper) are listed in Table 3. They are listed in increasing order of precedence (P), so the prefix operators
bind most tightly. The column headed A indicates those that are associative, either right (R) or left (L).

Table 3: Value expression precedences.

P Symbols A
14 Av3al R
13 = post

12 il R
11 ; R
10 =

9 = R
8 \% R
7 A R
6 | =#><><CCDD€e¢

5 +-\"Uf L
4 x/°N L
3 1

2 :

1 ~ prefix operators

2.2.2 Type Constructors

There are a number of type constructors for creating types from other types, illustrated in Table 4.

Table 4: Type constructors.

Ctr [P|A Example expressions Operators
x |2 (1,true,’a’)

-set | 1 {}, {1,2} hd, €, ¢, U,Nn, C,C, D, D, card, \
* 1 0, (1,2) hd, tl, €, ¢, 7, len, elems, inds
= |3 |R|[],['a" — true, b’ — false]| dom,rng, hd, €, ¢ U, 1,\,/,°
- |3 |R Ax:Intex+1 °
S 3R A(xy):Int xInt e x / y °

The column headed P indicates the binding precedence of the type constructors, where 1 is the highest.
The column headed A indicates the constructors that are right (R) associative; the others do not associate.
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The RAISE Specification Language 4

So, for example:

Int x Real-set - Real* — Bool

means
(Int x (Real-set)) — ((Real*) — Bool)

The product constructor x is used to form tuples. These may be pairs, triples, ... of any types.
This constructor is not associative. For example, Int x Text x Char and Int x (Text x Char) are
different types: the first is a triple, the second a pair containing a singleton and a pair.

-set, * and + create finite sets, list and maps respectively. There are also the potentially infinite set
(-infset), infinite list (“) and infinite map (v ) constructors, but they are rarely used.

card gives the number of elements in a (finite) set; len gives the length of a (finite) list. For example:

card {} =0
len ('a’,v','a’y = 3

The operator ~ is the concatenation operator for lists. For example:

(1,2) 7 (2,3) = (1,2,2,3)

Maps are relations, or associations, between pairs of values. Values on the left of the pairs forming the
association are said to form the domain, and those on the right are said to form the range. Finite maps
(7 ) are required to be one-one or many-one, not one-many or many-many. In other words, a value
in the domain must not be associated with more than one value in the range. For example, the type
Int - Int contains the value [1 — 2, 2 —4] but not the value [1— 2,1~ 4]. The dom operator
returns the domain (a set) and rng returns the range (also a set). For example:

dom [] = {}
dom ['a’ — true, b’ — true] = {'a’, v’}
rng ['a’ — true, b’ — true] = {true}

The union (U) of two maps is formed as if the maps were two sets of pairs and the union of the two sets
were the result. But it only gives a finite, many-one map if the domains are disjoint: see below. The
override operator t forms a map by taking the union of the two domains, and associating each domain
value with the appropriate range value from the second map, if any, otherwise that from the first map.
So the second takes precedence over, or “overrides”, the first. For example:

['a’ — true, v’ — true| U ['a’ — false, 'c’ — false] =
['a’ — true, 'a’ — false, b’ — true, 'c’ — false]

['a' — true, b’ > true] | ['a’ — false, 'c’ — false] =
['a’ + false, b’ — true, 'c’ — false]
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The RAISE Specification Language 5

We see that the union of two deterministic maps can be non-deterministic (and hence in the type of
possibly infinite maps constructed by ), unless their domains are disjoint, while override preserves
determinacy. So it is good practice either to never use union, or to only use it when the domains are
disjoint.

There are two ways of reducing, or restricting a map. \ (the operator also used for set difference) subtracts
a set of elements from the domain. / restricts the domain to values in its second argument. For example:

[1~ true, 2 — false] \ {2,3} = [1 > true]
[1~ true, 2 — false] / {2,3} = [2 > false]

— is the constructor for forming total functions. A total function is one that always returns a value when
it is applied and always returns the same value for the same argument. If a function returns some value,
we say it terminates, and if a function always returns the same value for the same argument we say it is
deterministic. So a total function is one that terminates and is deterministic for all arguments. Consider
tossing coins on a low-gravity planet as a function, with the coin as an argument. It is non-deterministic,
because each coin sometimes lands one way up, sometimes the other. If gravity is so low that very light
coins are tossed into orbit, then the function does not terminate for some arguments, as we wait for ever
for the coin to land. A function that is not known to be total for all arguments is called partial, and =
is the constructor for partial functions.

We can define functions using “lambda-expressions” as shown in Figure 4, though these are not often
used. The first, total function is the “add one” function for integers. The second, partial function, is the
integer division function. This is partial because it is not defined for division by zero.

The operator hd applied to a non-empty set returns an arbitrary value from the set. For a non-empty list,
hd returns the first element. For a non-empty map, hd returns an arbitrary element from the domain of
the map. hd is not defined when its argument is empty, so it is a partial operator. The definition of hd
for sets and maps was added to RSL after the publication of the two books on RAISE [6, 5].

For non-empty lists, tl returns the list obtained by removing the first element. Note that hd returns an
element, tl a list. For example:

hd (1,2) =1
tl (1, 2) = (2)

€ and ¢ for sets are conventional. For a list they refer to the element set; for a map they refer to the
domain. For example:

(1 € {}) = false
(1 €0, 2)) = false
1¢[1—"a",2 b)) = false

The definition of € and ¢ for lists and maps was added to RSL after the publication of the two books on
RAISE [6, 5].
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The RAISE Specification Language 6

Lists and maps may be applied like functions. For lists, the argument is an integer in the range one to
the length of the list inclusive. So an empty list cannot be applied, a list of length one can be applied
only to one, a list of length two to one or two, etc. When the argument can be applied, the result is the
corresponding element of the list. For example:

<Ial, Ibl>(1) — Ial

The elems of a list is the set of elements of it, and the inds (the indexes) of a list is the set of possible
integer arguments that it can be applied to. For example:

elems ('a’, 'a'y = {'a}
inds ('a’, 'a'y = {1, 2}

For maps, the possible arguments that it can be applied to are the values in the domain, and the result is
the corresponding value in the range. Since we insist that finite maps are many-one, finite map application
to values in the domain is deterministic.

The operator ° is available for maps and functions, with the basic property that, for two maps or two

functions £ and g:

(f° g)(x) = f(g(x))

2.2.3 Type Expressions

Type expressions are defined as one of the following:

a built-in type

a user-defined type

a type formed from type expression(s) using a type constructor

a subtype of another type expression

Subtypes are types that contain only some of the values of another type, the ones that satisfy a predicate.
For example, the type Nat is defined as the subtype

{li:Int «i>01}

That is, it is a subtype of Int, and is the type containing those integers that are at least zero.

Subtypes are commonly defined using functions, which makes them easier to read. For example, suppose
we wanted to define dates as triples of the form (day, month, year), then we might use the subtype
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The RAISE Specification Language 7

{] (d, m, y) : Nat x Nat x Nat - is_date(d, m, y) |}

where the predicate (boolean function) is_date is defined elsewhere, to constrain m to the range one to
twelve, and to constrain d according to m and whether y is a leap year.

2.2.4 Type Definitions

Users can define their own types, and there are two kinds of type definitions. Abbreviation definitions
just define identifiers that one can use instead of the defining expression. For example, here is a type
declaration containing two type abbreviation definitions:

type
Date_base = Nat x Nat x Nat,
Date = {| (d, m, y) : Date_base « is_date(d, m, y) |}

Type abbreviation definitions take the form “identifier = type expression” and, like all kinds of definitions,
are separated by commas.

The second kind of type definition introduces an identifier for a new type. This kind comes in four forms:

e abstract types, or sorts
e record types
e variant types

e union types

2.2.5 Abstract types

These are just type identifiers. An abstract type is a type we need but whose definition we haven’t
decided on yet. They are commonly used for two purposes:

e There are many simple types, like identifiers for people, bank accounts, books in a library, depart-
ments of an organisation, etc., that we expect to implement very easily in the final program, perhaps
as numbers, or characters, or strings. All we need is to use = to compare them, and = is defined
for all types, even abstract ones. There is a standard piece of advice in specification that you don’t
choose a design until you have to, so we typically leave such types abstract. We may later discover
during design that it is useful to distinguish between identifiers for reference books and those for
books that may be borrowed, and we can then design a type with a suitable structure. An added
bonus is that different abstract types are regarded as different by the type checker, so we avoid the
danger of using a person’s identifier for a book: the type checker will report an error.

e Sometimes we want to delay the design of a type not because it is simple, but for the opposite
reason: because it is complicated and we don’t yet know what the design should be. There is more
on this when we discuss the RAISE method, especially in Section 3.2.
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The RAISE Specification Language 8

2.2.6 Records

Records in RSL are very much like those common in programming languages. Here is an example that
might be found in a system for a bookshop:

type
Book ::
title : Text
author : Text
price : Real « new_price

This defines a new type Book as a record with three components. Each component has an identifier,
called a destructor, and a type expression. Optionally a record component can have a reconstructor. In
our example the third component has a reconstructor new_price.

Destructors are total functions from the record type to their component’s type expression. For example,
the type of price is

Book — Real

So we can apply price to a value of type Book to get its price. For a book value b, we write price(b),
as price is a function, rather than b.price as would be found in some languages.

Reconstructors are total functions that take their component’s type expression and a record to generate
a new record. The type of new_price is

Real x Book — Book

When we write, say, new_price(17.95, b) we get a new book value with the same title and author as
b, but with the price component set to 17.95.

A record type definition also provides, implicitly, a constructor function for creating a record value from
its component values. The identifier of the constructor is formed by putting mk_ on the front of the
identifier of the type, so in our case we have a constructor mk_Book of type

Text X Text x Real — Book

and we can write, say, mk_Book("0liver Twist”, “Charles Dickens”, 9.95) as a book value.

2.2.7 Variants

Variant types allow us to define types with a choice of values, perhaps with different structures. The
simplest case is rather like the enumeration type found in some programming languages, such as:

Report No. 249, March 2002 UNU/IIST, P.O. Box 3058, Macau



The RAISE Specification Language 9

type
Colour == red | green | yellow

This defines a new type called Colour and three (different) constants (red, green, and yellow) of type
Colour.

But variant types allow richer structures. For example, the following type defines binary trees holding
values of some type Val:

type
Tree == nil | node(left : Tree, val : Val, right : Tree)

This defines a new type Tree, a constant nil of type Tree, a constructor node of type

Tree x Val x Tree — Tree

and destructors left, val and right. The type of left, for example, is

Tree = Tree

The destructors are partial because they are not defined for nil trees.
Records are in fact special cases of variants: single ones. We could have defined the same type Book that

we used as an example of a record:

type
Book == mk_Book(title : Text, author : Text, price : Real < new_price)

This illustrates the fact that variants, like records, can optionally include reconstructors.

The type Tree is recursive: trees are defined in terms of trees. Variants are the only type definitions that
allow recursion.

2.2.8 Unions

Union type definitions allow us to make new types like variants out of existing types. Suppose types B
and C are defined somewhere. Then we can define a type A as their union:

type
A=B|C
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The RAISE Specification Language 10

This is in fact a shorthand for a variant, in which the identifier A, and the type names B, and C are used
to generate constructor and destructor identifiers:

type
A == A from B(A_to.B : B) | Afrom_-C(A_to_C : C)

In order for these constructor and destructor identifiers to be generated, the constituents of a union must
be names of user-defined types, and not general type expressions.

With union types, implicit (unwritten) coercions are allowed from union components to the union type.
Suppose, for example, a function f has A as its parameter type. Then we can apply f to a value c of type
C, simply by writing f (c). This is short for £ (A_from C(c)). We could similarly apply f to values from
B.

2.3 Values

Having introduced types, we can consider the values that populate the types. We first see how to define
values. We define values within value declarations, where a value declaration consists of the keyword
value followed by one or more value definitions separated by commas.

The simplest value definition takes the form “identifier : type expression”, and is called a typing, for
example:

value
x: Int

This may look like a variable declaration in a language like C (though the order of identifier and type
is reversed in C) but it is really a constant declaration. x is the identifier of a value, not of a variable:
a variable is a location where values can be stored, and the stored value can be changed. There is a
possible confusion between the way programmers use the term variable (which is the way we use it) and
the way a mathematician uses the term. The mathematician means by a variable something whose value
is not known, or does not matter, not something whose value may change. The constant x defined above
is more like a variable in the mathematical sense: it is a constant but we don’t know, without more
information, what its value is. Such constants are not allowed in programming languages, because there
is not enough information about them. They are useful in specification when, for example, we want to
describe a lift (elevator) system without saying how many floors the building has: the lift system can be
described for an arbitrary building.

Continuing with the same example, we might want to assume that the number of floors is at least two.
It is hard to imagine what a lift would do in a one storey building, or what a building with zero or a
negative number of floors would look like. So we might use an implicit value definition:

value
floors : Int « floors > 2
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(The type Int here could be replaced by Nat without changing the meaning.) floors is a constant, but
it must satisfy the predicate (logical expression) that follows the bullet «. The definition is implicit in
that we still don’t know what the actual value of floors is.

Sometimes we know the value of a constant: the constant identifier is just a convenient shorthand (and,
as in a program, makes things easier to maintain). We can use an explicit value definition:

value
floors : Int = 20

All three forms of value definition start with a typing, an identifier and a type separated by a colon. The
same applies if we want to define functions. First, a function definition may just be a typing, as in:

value
name : Person — Text

This definition says that there is a total function from the type Person to the type Text, i.e. “every
person has name”. It is used typically when we haven’t yet decided how to represent a person, i.e. Person
is still an abstract type. Implicitly, it says there must be enough information in the type Person for a
name to be extracted.

We can also define functions implicitly, with a postcondition:

value
square_root : Real = Real
square root(x) as r post r > 0.0 A rxr = x
pre x > 0.0

This defines a function to produce square roots, but without specifying how they should be calculated.
It requires that the result r should satisfy the predicate following post: it should not be negative and
its square must equal the parameter x. Since Real numbers only have Real square roots when they are
not negative, it is a partial function and we give it a precondition.

This function illustrates the fact that the type Real in RSL contains the mathematical real numbers. This
function is in practice not implementable in a programming language using limited precision arithmetic,
and we might prefer a specification requiring the result r to be within some machine-dependent tolerance
of the mathematical square root.

The types Int and Nat are similarly not implementable in normal computer arithmetic, because their
values are unbounded. In practice this is usually not a problem because we can be sure that the values
used or generated will not be so large as to cause over- or underflow. If it is a problem we would have to
write a specification of how arithmetic in the actual implementation behaves.

The final kind of value definition is the explicit function definition. Here is an example:

value
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factorial : Int = Int
factorial(n) = if n = 1 then 1 else n * factorial(n—1) end
pren >0

We need a precondition here since our version of factorial is non-terminating for 0 or negative numbers.
The definition of factorial illustrates a recursive function, one that is defined in terms of itself. It also
illustrates the if expression in RSL.

2.3.1 Overloading and Distinguishable Types

Value identifiers in definitions may be overloaded, i.e. the same identifier may be used to define different
values, provided their types are distinguishable by the type checker. Types are distinguishable unless they
are subtypes of the same type. For example, Nat is not distinguishable from Int (or any subtype of Int)
because they are both subtypes of Int. (Any type is a subtype of itself.) Similarly — is not distinguishable
from =5, nor  from o, nor -set from -infset, nor * from “. Int and Real are distinguishable.

Built-in operators may be overloaded. For example, we might define a new version of “+” as follows:

value
+ : Real x Int — Real
X+y=x+realy

This is possible as the type of “+” is distinguishable from both possible types of the built-in infix operator
“4+” which are

Int X Int — Int
Real x Real — Real

2.4 Logic

We have seen several examples of predicates, expressions that (we hope) evaluate to true or false. But
we have to clarify several issues in order to define our logic. In particular, we will need to define:

e what happens when expressions do not terminate, and

e what we mean by equality.

We know it is (unfortunately) easy enough to write programs that do not terminate. The problem is
present in specification as well, but we need to be very clear about what it means. We could, for example,
have written a poor definition of factorial, forgetting the precondition:
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value
poor_factorial : Int — Int
poor_factorial(i) = if i = 1 then 1 else i * factorial(i—1) end

and then ask what the expression poor_factorial(0) means. The technical answer is chaos, a special
expression in RSL that represents an expression whose evaluation does not terminate. We need to
distinguish in general between expressions and wvalues. Constants like true and 0 are expressions that
evaluate to themselves. “1 + 1”7 is an expression that evaluates to the value 2. chaos is an expression
that does not evaluate: it does not terminate. So what about an expression like “chaos + 1”7 The
general rule in RSL is “left-to-right” evaluation, which means in this case we evaluate the left argument
of +, and if this terminates with a value, we evaluate the right argument. If this also terminates with
a value, we add the two values to get the value of the whole expression. If either argument does not
terminate, neither does the whole expression. So “chaos + 1” is equivalent to chaos. So is “0 * chaos”
that arises when we evaluate poor_factorial(0), that you might have thought should be 0. All infix
operators are evaluated the same way.

Equality, =, is an infix operator. So if we try to express the equivalence between “0 * chaos” and chaos
we should not write

(0 * chaos) = chaos

because this expression would evaluate to chaos, not to true. We write instead

(0 * chaos) = chaos

where the symbol = is read as “is equivalent to”. Technically, two expressions are equivalent when their
semantics, their meanings, are equivalent. For values, and more generally for any expressions that are
deterministic, terminating, and read-only (do not write to variables or do input or output on channels)
equivalence and equality are the same.

We use the equivalence symbol in explicit function definitions, and we can now explain what a function
definition means, namely “when the precondition is true, the function application is equivalent to the
defining expression”. This definition does not say anything about the situation when the precondition
is not true. So, for example, we cannot say what factorial(0) is. The definition tells us nothing: it
may be chaos, or it may be some integer. We say it is underspecified. This does not make it a bad
specification. Rather, it tells us to be careful only to use factorial when we are sure the argument is
positive. We will see later in Section 4.8 that there is a tool, called the confidence condition generator,
to help us check this.

It seems sensible to be able to assert as true that

n > 1 = (factorial(n) = n * factorial(n—1))

for any integer n. This should be true for 0, so we want
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0 > 1 = (factorial(0) = 0 * factorial(0—1))

to be true. That is, we want

false = chaos

to be true. This means that = should not behave like an infix operator, and in RSL it does not. We call
the symbols =, A, V and ~ connectives and define them according to the rules, for any expressions ey,
ey, e:

e1 = ey = if e; then e; else true end
e1 A ex = if e; then e, else false end
e1 V ey = if e; then true else e; end
~e = if e then false else true end

To understand these, we need the evaluation rule for if expressions. This is:

1. Evaluate the expression following if.
2. If this does not terminate, the if expression does not terminate.
3. If it evaluates to true, evaluate the expression following then.

4. If it evaluates to false, evaluate the expression following else.

You can check that the definitions of the connectives and the evaluation rules for if expressions give the
same results as “classical” logic, which is only concerned with the values true and false. For example:

false = false
= if false then false else true end definition of =
= true evaluation rule for if expression

But now we also know what will happen when some expressions do not terminate. For example, the
following all evaluate to true:

false = chaos
~(false A chaos)
true V chaos

The reason for including chaos in RSL is not that it is needed in specifications: you normally do not
want your programs to loop forever! It is a useful convenience in expressing the proof theory of RSL,
which is what we mean by the logic. (And even if chaos were not included, you could write a variety of
equivalent expressions, such as “while true do skip end”.)
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The logic in RSL is called a conditional logic as it is based on conditionals (if expressions). There are
other approaches to the problems of non-terminating expressions, such as the “logic of partial functions”
(LPF) [8, 9] which is used by the specification language VDM [10]. Without going into the argument as
to which is better, we note two things:

e V and A in RSL are only commutative if their arguments terminate. For example:

(true V chaos) = true
(chaos V true) = chaos

e The connectives in RSL are implementable, because they can be translated using if expressions in
programming languages, which evaluate just like RSL if expressions.

For LPF the opposite holds: V and A are always commutative, but the connectives are in general only
implementable when their arguments terminate.

2.4.1 Quantifiers

RSL includes the guantifiers ¥ (for all), 3 (there exists) and 3! (there exists exactly one). For example,
the following are all true expressions:

Vi:Inte (ix2)/2=1
Vi:NatedJj: Natej=1i+1
Fi:Int-i<O0Ai>0

The quantification is over values in the type. It does not include expressions like 1/0 or chaos.

2.4.2 Typings

What follows the quantifier is always a typing, just like the start of every kind of value definition. But
we can have more general forms of typing than just an “identifier : type expression”: the identifier can
be a binding.

2.4.3 Bindings

A Dbinding is commonly just an identifier, but it can be parentheses enclosing two or more bindings
separated by commas. So the following are all bindings:

X

(x,5)
(x,(y2))
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The identifiers in a binding must all be different.

In a typing, the structure of a binding must match the structure of the type: if the binding is for a
product, so must the type be. For example, if Pair is defined as an abbreviation for Int x Int, the
possible typings include the following:

but “(x,y) : Int”, for example, is not possible.

Bindings also occur as the formal parameters of implicit and explicit function definitions (like the n in
factorial(n) = ...). What about a function f with type

AxB— ..

Does this have two parameters or one? In RSL you can take either view: the formal application can be
written £ (a,b) or £((a,b)), or even £ (p) (where p is a binding for a pair).

2.5 Value Expressions

We have already seen the literals, infix and prefix operators for various types in Section 2.2, the boolean
connectives, if expressions and quantified expressions in Section 2.4. There are some other value expres-
sions that we describe in this section.

2.5.1 Set Expressions

Sets may be formed in three ways:

1. enumerated sets like {} (the empty set), or {1,3,2}.

2. ranged sets (for integers only) like {1..3}, which is equal to the second enumerated set example. If
the second number in the range is less than the first, the ranged set is empty.

3. comprehended sets like { i/2 | i: Int « i € {2..7} }, which is again equal to the second enumerated
set example. The predicate following « (called a restriction) may be omitted, in which case it is as
if it were true.

Other expressions may of course also represent sets. For example, a function may return a set and then
an application of the function will be a set expression, an expression whose type is T-set for some type
T. Similar remarks apply for lists and maps.
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2.5.2 List Expressions
Lists may be formed in three ways:

1. enumerated lists like () (the empty list), or (2,1,2,3).

2. ranged lists (for integers only) like (1..3), which is equal to the tail of the second enumerated list
example. If the second number in the range is less than the first, the ranged list is empty.

3. comprehended lists like (i/2 | i in (2..10) i < 8 ) which is again equal to the tail of the second
enumerated list example. As with enumerated sets, the restriction may be omitted. A compre-
hended list takes its elements from another list expression, rather than a typing as with a set, and,
see below, a map.

2.5.3 Map Expressions
Maps may be formed in two ways:

1. enumerated maps like [] (the empty map), or [1 — true, 3 — true, 2 — false].

2. comprehended maps like [1 — is_odd(i) |i: Int «i> 0 A i < 4], which is again equal to the second
enumerated map example (assuming an appropriate definition of is_odd). The restriction may be
omitted, in which case it is as if it were true.

2.5.4 Let Expressions
Let expressions are used in two main ways:

1. to destruct a product. For example:
let (x,y) = (1,2) in x + y end

will evaluate to 3. First we evaluate the expression following the =. Then we bind x to the first
part, and y to the second. Finally we evaluate the expression following the in.

2. to organise an evaluation into several steps. For example, a function to sum a list of integers might
be defined as:

value
sum : Int* — Int
sum(s) =
ifs = () then 0
else
leth =hds, t =tls, x =sum(t) in h + x end
end

This is particularly useful when the sub-expression like hd s would, without the let, occur more
than once. But even when this would not occur, let expressions often improve readability.
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2.5.5 Case Expressions

Case expressions are commonly used to express functions over lists and over variant structures. For
example, the sum function could be written:

value
sum : Int* — Int
sum(s) =
case s of
() =0,
(h)"t — h + sum(t)
end

A case expression consists of a series of patterns plus associated expressions. The case patterns are tried
in order, the first pattern that matches is taken, and the associated expression evaluated. The pattern
() matches the empty list. The pattern (h)"t matches a non-empty list, and at the same time binds h to
the head and t to the tail.

An example of a case expression for a variant type is the body of a function to calculate the depth-first
traversal of a tree (Section 2.2.7), returning a list of the values in the nodes of the tree:

value
traverse : Tree — Val*
traverse(t) =
case t of
nil — (),
node(l, v, r) — traverse(l) = (v) ~ traverse(r)
end

The bindings in patterns may be replaced by “wildcards”, underscores, when their values are not needed.
For example, a function to calculate the depth of a tree (assuming max is defined somewhere):

value
depth : Tree — Val*
depth(t) =
case t of
nil — 0,
node(l, _, r) = 1 + max(depth(l), depth(r))
end

The most commonly used case patterns are for lists and variants, but literals are also possible, and there
is a “wildcard” pattern _ that matches anything. For example, a strange definition of is_odd:

value
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is.odd : Nat — Bool
is.odd(n) =
case n of
0 — false,
1 — true,
_ — is.odd(n—2)
end

2.6 Axioms

So far we have seen type and value declarations. There are also axiom declarations, introduced by the
keyword axiom and consisting of axiom definitions separated by commas. Each axiom definition is a
predicate, optionally preceded by an identifier in square brackets. For example, instead of defining;:

value
floors : Int - floors > 2

we could write:

value
floors : Int
axiom
[floors_constraint | floors > 2

In fact all value definitions, functions as well as constants, can be written in this style, a typing plus an
axiom. There are “axiomatic” or “algebraic” specification languages, like Larch [11] and CASL [12], that
use only this style, and are also restricted to abstract types. This style can be used within RAISE, but
we choose also to have available the pre-defined sets, lists, maps, and products that are characteristic of
the “model-based” specification languages like Z [13], B [14], and VDM [10].

2.7 Test Cases

Test cases have no semantic meaning: they are like comments directed at an interpreter or translator
meaning “please provide code to evaluate these expressions and report the results”.

The syntax of test cases is much like axioms, except that the test case expressions can be of any type.
For example, if we wanted to test the function to sum a list of integers we might define

test_case
[sumg | sum((}),
[sum; | sum((1,2,2,3))
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and expect to see the results

[sum0] O
[sum1] 8

But a perhaps more useful style of test case is to include the expected result in the test case, i.e. to write

test_case
[sumg ] sum(()) = 0,
[sum; ] sum((1,2,2,3)) = 8

so that the output for every test case should be true.

Test cases are always evaluated in order of definition. This is useful for imperative specifications, intro-
duced below in Section 2.8, when there are variables storing information. Information stored as a result
of one test case is available for the next one, so we can, for example, test use-cases step-by-step as a
sequence of test cases, outputting intermediate observations as the result of each.

Test cases were added to RSL after the publication of the two books on RAISE [6, 5].

2.8 Imperative Constructs

Much of the specification in RSL is done with the language described so far in this paper, which we call
applicative. This comes from the fact that this style of writing specifications (or programs in languages
like Lisp, SML, and Haskell) is mainly done in terms of definitions and applications of functions. It is
advantageous in that it is close to mathematics, and so supports reasoning in the way mathematics does.

Perhaps the most common style of programming is the imperative style of languages like Pascal and C.
These depend on the use of variables, essentially locations in a store that allow values to be stored and
retrieved. RSL allows specifications to use this style, but the RAISE method suggests (Section 4.1) that
it only be used in later stages of development, as a step towards an implementation in a programming
language.

To support the imperative style, RSL includes variable declarations, assignment expressions, and se-
quences of expressions. For example:

variable
counter : Nat :=0

value
increment : Unit — write counter Nat
increment() = counter := counter + 1 ; counter

Here we have a variable declaration with one variable definition, consisting of an identifier, a type, and,
optionally, an initial value. There is also a function increment which will add 1 to the counter. increment
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needs no parameters, so we give it none and use Unit as its argument type. It returns a Nat, so this
appears as its result type. But we also include an access clause in its type, that says it may write, and
so change, the contents of the variable counter. (read is the other kind of access; write includes read.)
Accesses are normally written using one or more names of variables, but we may also use the universal
access any to allow access to any variable defined in the same module.

The body of increment consists of two expressions combined by “;”, the sequential combinator. The
assignment is an expression rather than, as in many languages, a statement: there are no statements in
RSL, only expressions. This avoids the need for keywords like “return” that just convert an expression
to a statement in languages like C. Since an assignment is an expression it must have a type, and this is
Unit. There is a rule that, for two expressions combined by “”, the first must have type Unit and the
type of the whole expression is the type of the second.

For an indication of why imperative features cause problems with reasoning, consider the two predicates:

increment() = increment/()
increment() = increment|()

Is either of these true? Consider the first, and recall the rule for evaluating infix operators like equality:
evaluate the left expression; if it terminates evaluate the right; if that also terminates compare the results.
It should be clear that the result will be false. In addition, the evaluation of the equality has had the
effect (commonly called a “side effect” as if it didn’t matter too much) of adding 2 to the counter. Yet
the equality looks as if it should be true, certainly to any mathematician!

Now consider the second predicate. Is increment () equivalent to itself? It seems natural that we
should say yes, and indeed it is so: any expression (even one that does not terminate) is equivalent to
itself. We defined equivalence as semantic equivalence, and with imperative constructs we can say that
expressions are equivalent if (given the same initial state, i.e. the same initial values in all variables) they
are either both non-terminating, or they have the same effect on the state and return the same result.
The evaluation of the equivalence, unlike the evaluation of the equality, does not change any variables.
It simply returns true if the hypothetical questions “Would these two expressions have the same effect?”
and “Would these two expressions return the same result?” are both answered with “Yes”.

2.8.1 If Expressions

We have seen if expressions before, but there are two features we have not described:

1. When there are several alternatives we can include one or more elsif clauses. For example:

type
Compare == greater | equal | less
value
compare : Int x Int — Compare
compare(x, y) =
if x > y then greater
elsif x = y then equal
else less end
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elsif clauses are equivalent to nested if expressions in the obvious way.
2. For if expressions of type Unit the else clause may be omitted, as in:
value

decrement : Unit — write counter Unit
decrement() = if counter > 0 then counter := counter — 1 end

The missing else clause is equivalent to “else skip”, where skip is the “do nothing” expression (of
type Unit).

2.8.2 TIterative Expressions

There are while, until and for loops in RSL. Consider the following examples:

variable
counter : Nat,
result : Real

value
sum; : Nat = write counter, result Real
sum; (n) =
counter := n;
result := 0.0;

while counter > 0 do
result := result + 1.0/(real counter);
counter := counter — 1
end;
result

pren > 0,

sum, : Nat = write counter, result Real

sumz(n) =
counter := n;
result := 0.0;
do

result := result + 1.0/(real counter);
counter := counter — 1
until counter = 0 end;
result
pren > 0,

sums : Nat = write result Real
sumg(n) =

result := 0.0;

for counter in (1..n) do

result := result + 1.0/(real counter)

end;

result
pren >0
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It should be apparent that the three functions sum;, sumy and sumg all compute the same value, namely

1+1/2+ ...+ 1/n (1)

Are the preconditions necessary? There are two possible reasons for them:

1. We don’t know what the expression (1) would mean if n is zero.

2. We don’t want to divide by zero.

It is clear that only sumy needs the precondition for the second reason, to avoid dividing by zero. (For
the for loop, remember that a ranged list is empty when the second number is less than the first. A for
loop is equivalent to skip when the list is empty.)

2.8.3 Local Expressions

It is clear in the examples of loops that it would be better if the variables counter and result had a
smaller scope: they should be inside the functions that use them, when their purpose is clearer. There is
a local expression in RSL that allows variable declarations, or any other kind of declarations, to be local
to an expression. Here is another version of sum; using a local expression:

value
sum; : Nat = Real
sumy (n) =
local
variable
counter : Nat :=n,
result : Real := 0.0
in
while counter > 0 do
result := result + 1.0/(real counter);
counter := counter — 1
end;
result
end
pren >0

2.9 Concurrency

Concurrency in RSL is based on synchronisation between concurrently executing expressions (commonly
called processes) using channels. Channels are declared with the keyword channel followed by one or
more channel definitions separated by commas. A channel definition is one or more channel identifiers
plus a type, the type of data that may be transmitted on the channel(s). For example:
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type
Data
channel
left, right : Data

Functions that use channels for input and output need in and out access to channels, similar to access
rights for variables. Consider the following definition:

value
one_place_buffer : Unit — in left out right Unit
one_place_buffer() =
while true do
let x = left? in right!x end
end

left? is an input expression which returns the value made available on the channel left. (Hence left?
has type Data.) right!x is an output erpression that puts a value onto the channel right. (right!x
has Unit type.) So one_place buffer repeatedly accepts values on the left channel and outputs them
on the right channel.

Channel communication in RSL is point-to-point and synchronised: in order for an input like left?
or an output like right!x to execute it is necessary for another concurrent process to be executing a
corresponding output or input, i.e. in the opposite direction on the same channel. So executing on its own,
one_place buffer can do nothing: it will wait for ever on the input expression left?. This situation,
an expression waiting for ever for input or output, is termed deadlock, and there is an expression for it
in RSL: stop. In practice we will want to avoid it occurring.

one_place buffer is a kind of server, and is supposed to run forever. But we earlier characterised a
non-terminating process as chaos. To resolve this, we redefine non-terminating as meaning a process
which either runs forever without doing input or output (chaos) or deadlocks (stop). We might think
that stop means terminate, but termination includes the idea of allowing the next expression in sequence
to execute, while deadlocking means that no further progress is possible.

If there are two or more other concurrent processes waiting to output on left then an arbitrary choice
of communication is made between them: one will pass its value to one_place buffer, the other(s) will
continue to wait. Then, if there are two or more processes waiting for input on the right channel,
one_place buffer will synchronise with just one of them, passing its value, and leaving the other(s)
waiting. Such behaviour, with arbitrary choices between possible behaviours, is usually undesirable, and
we often try to avoid it by making sure that there is only one process inputting and one outputting on
each channel. Buffers typically serve just one process putting values in and one process taking them out.
But some servers, like databases, for example, are intended to support many concurrent users.

Buffers are common components used to allow processes to run at different speeds. If a process A wants
to send data to another process B, and we use a channel between them, then A can only send a data item
when B is ready. If instead we place a one_place buffer between them, A can place a value, v, in the
buffer by executing left!v and continuing. The expression that represents A and B running in parallel
with the one_place buffer is

A || B || one_place_buffer()
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“|I” is the concurrent composition combinator. It requires that all its arguments have type Unit, and the
result is type Unit. It is associative and commutative, so its arguments may be written in any order.

With a one place buffer the solution to the problem of processes of different speeds is limited: A cannot
get more than one item ahead of B. If A wants to do a second output on left, before B has done an input
on right, then one_place buffer will be waiting on the output right!v and A will have to wait.

A Dbetter solution is to have a buffer that can contain many values. Here is a buffer with maximum
capacity of max items:

value
max : Nat
variable
buff : Data* := ()
channel
put, get : Data
empty : Unit
value
buffer : Unit — write buff in put, empty out get Unit
buffer() =
while true do
empty? ; buff := ()
I
if len buff < max
then let x = put? in buff := buff = (x) end
else stop end
I
if buff # ()
then get'hd buff ; buff := t1 buff
else stop end
end

The expression for buffer uses external choice “[]” to offer, in general, three choices to its clients:

1. An output on the empty channel causes the buffer to be emptied.

2. Provided the buffer is not full, an output of a value v on the put channel causes v to be appended
to the buffer.

3. Provided the buffer is not empty, an input on the get channel will remove a value from the buffer
and return it.

The choice is called “external” because it is the client processes that decide which choice is taken: the
server buffer will cooperate with whatever is asked of it.

If we have two clients trying to interact with buffer at the same time, perhaps one doing a put and the
other a get, an internal (arbitrary) choice will be made between them, to choose which interacts first.
Such internal choices are common in the execution of concurrent systems. But we always design servers
using external choice “[]”, as if we used internal choice “[]” their behaviour would seem very erratic to
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their clients. The reason for this is that if a client wanted to do a put, say, (and the buffer was not full),
the nondeterministic version of buffer could (even in the absence of any other clients) internally choose,
say, the first choice of waiting for a communication on empty, resulting in deadlock.

What happens when the buffer is full or empty? We would like in these cases for the put or get choice
respectively to not be available, forcing clients wanting to use these channels to wait. One might expect
to see skip in the relevant else clauses of buffer, but in fact stop is what we need. The reason for
this is that stop turns out to be the unit for external choice (like 0 is the unit for addition, and 1 for
multiplication): it satisfies, for any expression e, the equivalence

e[] stop=e

We now consider another example. Suppose we have a database, initially specified as a map from Key to
Data, and we need a lookup function. This would be partial, as the key might not be in the database.
Part of our applicative specification might be:

type
Db = Key  Data
value
lookup : Key x Db = Data,
lookup(k, db) = db(k)
pre defined(k, db),

defined : Key x Db — Bool
defined(k, db) = k € db

Now suppose we want to make a concurrent database server, to allow multiple concurrent users. The
standard approach says that there will be one choice in the server for each function in the applicative
version. Functions like lookup and defined will need a channel to pass the input (in each case of type
Key) and also a channel to pass back the result (of type Data and Bool respectively).

But this approach is inadequate with partial functions like lookup. In the concurrent case with multiple
clients we can get patterns like:

1. A asks if key k is defined, and gets the result true
2. B deletes key k

3. A tries to lookup key k

We need to combine A’s interactions into a single transaction that is atomic in the sense that, once started,
no other interaction with the database is possible until it is completed. The way to do this is to create a
total version of lookup, that can return a Data value or a “not found” value. We need a new type:

type
Result == not_found | res(data : Data)
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and then the relevant choice in the server process, assuming a variable db holding the database, is:

let k = lookup? in
if defined(k, db) then lookup_res!res(lookup(k, db))
else lookup_res!not_found
end

end

A further improvement is to also define an “interface process” lookup to be used by clients:

value
lookup : Key — out lookup in lookup.res Result
lookup(k) = lookuplk ; lookup_res?

This has two advantages over allowing clients access to the channels directly:

1. The channels can all be hidden, allowing tighter control over access to them. We will see how to
hide things in Section 2.10.

2. The interface processes enforce the right protocol. In our case we see that the interface process
lookup does an output on the channel lookup and then an input on lookup_res. We need to check
that there is a choice in the server that offers the dual of this: an input on lookup followed by
an output on lookup_res. Provided this is the case, no deadlocks are possible if clients can only
call the interface processes. With direct access to the channels a client could contain an error like
an output on lookup without the input that should follow it, which could cause the database to
deadlock, waiting to do an output on lookup_res.

2.9.1 Comprehended Expressions

The combinators [], [], and || may be applied to comprehended sets of expressions of type Unit. For
example:

|| { A[i].init() | i: Index }

is a comprehended expression representing the parallel execution of the init functions of all the objects
in A, which is an object array (see Section 2.12) indexed by the type Index. As with comprehended sets,
lists, and maps (Section 2.5), the comprehended expression may include a restriction. For example:

0 { Ali].put(d) | i : Index » ok(i) }

is a comprehended expression representing an external choice between invoking the put functions from ob-
jects in the array A whose indexes satisfy the condition ok. If there are no such indexes, the comprehended
expression will deadlock.
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2.10 Modules

As we mentioned earlier, there are two kinds of module in RSL, schemes and objects. Schemes are
essentially classes, and objects are instances of classes, so the basic thing is the class expression. These
come in six forms: basic, extending, renaming, hiding, with, and instantiation.

2.10.1 Basic Class Expressions

These were introduced in Section 2.1. They consist of the keywords class and end with any number of
declarations between them. The declarations (and their constituent definitions) may come in any order.
There is no “define before use” rule in RSL. All the entities defined in the class expression are exported
(visible outside it) by default: there is nothing like an “export” clause in RSL.

2.10.2 Extending Class Expressions

If C; and C, are class expressions:

extend C; with C,

is an extending class expression. The declarations of Co are added to those of C;. The declarations of Ca
can refer to entities defined in C;, but not vice versa. The declarations of C; and C; must be compatible,
which simply means that duplicate definitions are not allowed, any more than they would be in a single
class expression.

2.10.3 Renaming Class Expressions

If Cis a class expression:

use id;’ for idy, ..., id,,’ for id,, in C (n>1)

is a renaming class expression in which the entities id;, ..., id, are exported with identifiers id;’, ...,
id,": they are renamed. The entities may be types, values, variables, channels or objects.

2.10.4 Hiding Class Expressions

If C is a class expression:

hide idy, ..., id,, in C (n>1)
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is a hiding class expression from which the identifiers id;, ..., id, are not exported. Hiding is most
commonly used to hide objects, variables, channels and auziliary functions (functions only intended for
use within the original class to define other functions). Hiding is used to prevent access from outside
the class, and also used to hide auxiliary functions or other entities that we don’t expect to use in later
developments, because hidden entities do not need to be implemented.

2.10.5 With Class Expressions

If Cis a class expression:

with O4, ..., O, in C (n>1)

is a with class expression. 0y, ..., 0, are object expressions (see Section 2.12). The meaning of with X in
C is that an applied occurrence of a name N in C can mean either N or X.N, so that, in particular, we can
write just N instead of X.N. (It is similar to “using namespace” in C++.)

The with class expression was added to RSL after the publication of the two books on RAISE [6, 5].

2.10.6 Scheme Instantiations

If we define a scheme called S, say:

scheme S = C
then we can use S to mean the class expression C, for example in “extend S with ...”: the occurrence of
S here just means the same as C. The occurrence of S is called an instantiation of S.

But it is also possible to parameterise a scheme, and we discuss this in the following section.

2.11 Parameterised Schemes

The most common use of parameterised schemes is to make generic schemes. For example, we considered
earlier the type of binary trees. We may want more than one kind of binary tree: one to hold integers,
another to hold names, etc. But we would like to define the type Tree and its associated functions only
once. We can proceed as follows:

e We define a class to act as the scheme parameter. Commonly we use a scheme to define this class:

scheme ELEM = class type Elem end

This is a very simple, as well as a very common scheme to define a parameter. But there are no
restrictions on what we can put into a parameter’s class expression. This makes the parameterisation
mechanism in RSL much more powerful than, for example, templates in C++.
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e We define a generic scheme TREE using ELEM as a parameter:

scheme TREE(E : ELEM) =

class

type
Val = E.Elem,
Tree == nil | node(left : Tree, val : Val, right : Tree)

end

The abbreviation definition of Val is just a commonly used convenience. We could omit it, replacing
all other occurrences of Val with E.Elem.

Technically the parameter “E : ELEM” is like an object definition (see Section 2.12). E is the identifier
of an object, so E.Elem means the type Elem defined in the object E.

So how do we make trees of integers, say? We need to make an instantiation of TREE, and the actual
parameter we need is an object, just as the formal parameter is an object. So we define an object I, say:

object I : class type Elem = Int end

and now the scheme instantiation TREE(I) is what we want. The formal definition of TREE(I) says
that it is the class expression of TREE with every occurrence of the object identifier E replaced by I. So,
in particular, the defining type expression of the type Val will be I.Elem, which we can see from the
definition of I is just an abbreviation for Int.

For type checking, there is a condition between the class of the formal parameter E and the class of the
actual parameter I. This is that the latter must be a static implementation of the former. This means
that for every entity in the formal parameter there must be an entity in the actual parameter of the same
kind (type, object, value, variable or channel) with the same identifier and:

e for types, if the formal type definition is an abbreviation, the actual type definition must be an
abbreviation for a type that is maximally the same

e for objects, the defining class in the actual parameter must statically implement the defining class
in the formal parameter

e for values, variables and channels, the types in the actual and formal parameters must be maximally
the same.

Here “maximally the same” means the types must not be distinguishable (see Section 2.3.1).
The actual class expression may contain more entities than the formal.

Schemes can have several parameters. For example, we might define a generic database:

scheme DATABASE(D : ELEM, R : ELEM) =

Report No. 249, March 2002 UNU/IIST, P.O. Box 3058, Macau



The RAISE Specification Language 31

class
type
Domain = D.Elem,
Range = R.Elem,
Database = Domain 7 Range

end

and we can instantiate DATABASE with two different objects, or the same object twice.

Sometimes we find we have an object that defines the things we need for the actual parameters, but with
the wrong identifiers. For example, the RAISE method (Section 3) suggests defining a number of simple
types that will be used throughout the specification in a scheme TYPES, and making an object T from
this. Now suppose TYPES defines types Id and Name, and we want to instantiate the DATABASE with Id
as the domain type and Name as the range type.

We can instantiate DATABASE as

DATABASE(T{Id for Elem}, T{Name for Elem})

The construct {id;’ for idy, ..., id,’ for id, } is called a fitting. It acts as if the fitting had been applied
to the formal parameter class as a renaming.

It is possible to have parameters which depend on each other. For example we could define:

scheme S(E : ELEM, T : TREE(E)) = ...

Then if we define objects by, say:

object
I: class type Elem = Int end,
TR : TREE(I)

then S could be instantiated as S(I, TR).

2.12 Object Declarations

Technically class expressions denote, or mean, classes (collections) of possible implementations of them.
We get different possible implementations with abstract types (since any type can be used as an im-
plementation) and with underspecified values. The possible implementations are called objects. Object
declarations consist of the keyword object followed by one or more object definitions separated by com-
mas.

If Cis a class expression, we can define an object 0 by:
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object
0:C

and 0 denotes some object in the class C.

If x is an entity in C (and not hidden or renamed in C), then, in the scope of this object definition, x can
be referred to by the name 0.x. This is sometimes called a qualified name, and the prefix 0 the qualifier.

The universal access any can also be qualified. For example, the access clause read 0.any in a function
signature allows the function to read any variable defined in the object 0 (including variables defined in
any objects defined in C). This is often needed to write the signatures of functions that invoke functions
in imperative modules, since variable and channel names are commonly hidden.

It is also possible to define object arrays in RSL. The object name is given a formal parameter in the
form of a (list of) typings. For example, a collection of buffers indexed by a type Index could be defined
by

object
B[i : Index] : BUFFER

and the expression B[e] .put(d), where e is an expression of type Index, and put a function defined in
BUFFER, would be used to put data value d in the buffer indexed by the value of e.

2.13 Comments

There are two kinds of comment supported in RSL. Block comments are opened by /* and closed by */.
They may be nested. Line comments are opened by -- and closed by the end of a line (or file). Both
kinds of comment are allowed anywhere where white space would be allowed.

Line comments were introduced, and the original restriction on the use of block comments to only certain
syntactic constructs was removed, after the publication of the two books on RAISE [6, 5].

3 The RAISE Method: Writing Initial Specifications

As long as you conform to the syntax and type rules of RSL, you can describe and develop software in
any way that you choose. But there are a number of ideas for using RSL that have been found useful in
practice, and that collectively we describe as “the” RAISE method.

There are two main activities involved in the method: writing an initial specification, and developing it
towards something that can be implemented in a programming language, and we describe these separately
in this Section 3 and the following Section 4.

Writing the initial specification is the most critical task in software development. If it is wrong, i.e. it fails
to meet the requirements, then following work will be largely wasted. It is well known that mistakes made
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early in the life-cycle are considerably more expensive to fix than those made later, precisely because they
cause so much time and effort to be expended going in the wrong direction. But we should clarify this
to say that it is mistakes made and not quickly found that are expensive. We can’t guarantee that we
won’t make mistakes, but if we can discover them quickly then not too much harm is done.

What kind of errors are made at the start? The main problem is that we may not understand the
requirements. They are set in some domain in which we are usually not experts, while the people who
wrote them, to whom the domain is familiar, tend to forget to explain what to them is obvious.

In addition, requirements are written in a natural language, like English or Chinese, and as a result are
likely to be ambiguous. They are often large documents developed by several people over a period of
time. As a result they are often contradictory: what they say on one page may differ from what they say
on another.

The aim of the initial specification is to capture the requirements in a formal, precise manner. Formality
means that our specification has just one meaning, it is unambiguous. By capturing the requirements we
mean rewriting them in our terms, creating our model of what the system will do. So how can we check
that the model we create accurately models what the writer of the requirements has in mind?

3.0.1 Be Abstract

The specification should be abstract, it should leave out as much detail as possible. The requirements
may demand that identifiers have a certain format, or that dates should be presented in a particular style,
or that calculations should be done to a certain degree of accuracy, or that a user screen should have a
certain appearance, but we try to extract the essential information: that there are identifiers, presumably
different for each different entity they identify, that we need dates, that certain calculations need to be
done, that users may be requested for certain information and as a consequence they may be presented
with other information, or the system’s state may be changed in certain ways. We know that we can fill
in the details later: we can design screens provided the information to be presented is available or can be
calculated, and provided we know what input to demand.

3.0.2 TUse Users’ Concepts

The concepts in the specification should be the same as the user’s concepts. If the requirements say that
each customer has an account, and an account is a record of all the customer’s transactions, then that
is what the specification should say. It should not refer to concepts like databases, tables, and records:
these are computer concepts that describe ways of solving the problem, while what we want to do first is
describe the problem, not its solution.

3.0.3 Make it Readable

Specifications are intended to be read by others: by those who are to check that they correspond to
requirements, by those who are to implement them, by those who are to write test plans, by those
who later want to maintain the system, etc. So we want to make them as readable as possible. The
guidelines here are very much like those for programming languages: meaningful identifiers, comments,
simple functions, modules that are coherent and loosely coupled, etc.
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3.0.4 Look for Problems

We recall that what we want to do is avoid mistakes, or find them quickly. So we concentrate on the
things that appear difficult, strange, or novel, and we ignore or defer things that are straightforward.
We might be mistaken as to what is hard, of course, but we hope that with some experience we have a
feeling for such things. In capturing requirements we are also trying to find out if the system we intend
to develop is feasible, at least within our budget constraints, and so we want to be assured as early as
possible that we have appropriate solutions to all the problems. If we don’t, we may need to do some
experimentation or research before we commit ourselves further.

3.0.5 Minimise the State

State information should be minimal. This means in particular that we try hard not to include in the
state dependent information: information that can be calculated from other information in the state. If
C can be calculated from A and B, then we should not model C as part of the state. If C is stored as part
of the state, together with A and B, then we will need a consistency condition that what is stored for C
is the same as would be calculated from the stored A and B. There is a general notion that the simpler
the set of consistency conditions needed, the better the state is designed. It may be that later we decide
we need to store C, to achieve sufficient speed, but this should be done as a later stage of development.

When we refer to the state of a system we mean the information that is stored, that persists between
interactions with it. We also speak of the state of a module, where we mean the part of the state
associated conceptually with that module, which will typically provide functions to change it and report
on it. We use the term global state where necessary to refer to the state of the whole system, as opposed
to that of a module, or of a group of modules that we see as a subsystem.

3.0.6 Identify Consistency Conditions

While we try to make the state minimal, it is still usually the case that we need consistency conditions
and policy conditions. Consistency conditions are needed if some possible state values cannot correspond
to reality: two users of a library borrowing the same copy of a book simultaneously, perhaps. Policy
conditions are ones that might perhaps arise in reality, but we intend that they should not happen: a
user borrowing too many books at one time, perhaps.

If our system’s state cannot correspond to reality then it becomes essentially useless: it cannot tell us
who really has the book, and we probably cannot trust any information it might give us. Preserving
consistency conditions is more critical for the healthiness of our system than keeping within policy.

We identify the consistency requirements first because sometimes we can think of a state design that
will reduce the need for consistency conditions. For example, if we record a borrower against a copy of
a book, only one such borrower can be recorded and the inconsistency of two simultaneous borrowers
cannot occur. We need to bear the consistency conditions in mind during development, as we will want
our functions to maintain consistency, and our initial state to establish it.

Sometimes consistency is dealt with by a subtype: we can record the number of books someone can
borrow as a Nat, for example, to prevent it being negative. But often consistency requirements will
involve more than one module, and then it is generally better to define a function expressing it, but
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not try to impose it as a subtype. When there are several modules involved it may not always be true
during processing: we will merely want to establish that, starting from a consistent state, every top-level
function will generate another one.

There are several common sources of possible inconsistency that arise in many domains, because they
relate to common data structures:

e Much data is modelled as maps, allowing us to use identifiers as references. These identifiers may
then be used elsewhere, and we need to ensure that every reference is to data that exists. For
example, the borrower of a copy of a book should be a registered user.

e Sometimes we have relations that relate values of some type to itself, like “child” or “part of”
relations. Then we typically need to ensure that there are no cycles in the relation, or else functions
using the relation are likely not to terminate.

e It may be possible to access information in two ways (which is an indication that our state is not
minimal, but may be done for efficiency reasons, especially in refinements of the initial specification).
Then we need to check that the two ways to access information give the same result. If we can
find out borrowers from information about copies of books, and find out copies borrowed from
information about borrowers, then we can state as a consistency conditions (a) that the recorded
borrower of a book (if any) has a borrow record for that copy for that book, and (b) that each copy
in the set of copies borrowed by a borrower has the borrower recorded.

Consistency conditions help us write functions, or at least they help us avoid mistakes in functions that
would occur if we overlooked consistency. They also have a relation to preconditions. Preconditions serve
two main purposes:

1. They allow us to avoid unsafe or unpredictable situations, like dividing by zero, or in general
applying a function or operator when its result would be undefined or non-terminating,.

2. They allow us to avoid situations where we would otherwise break consistency. So a function
borrow, for example, might include in its precondition that the user involved is registered.

It is not usually a good idea to include consistency as part of preconditions. The reason for this is that
functions at the top level, accessible by our users (people or other software), will generally need to have
preconditions checked when they are invoked. Checking consistency typically involves searches through
all the state and this would be too inefficient. (At the same time, including a simple check even though it
is implied by consistency is sensible as part of “safety-first” style.) We instead, as we mentioned above,
take steps during development to ensure that our functions all preserve consistency, and that our initial
state establishes it, so we can then assume it to be true.

Policy conditions are generally separated from consistency. States that violate policy requirements are
possible in the real world, and if our system is to be a faithful model of the real world it must also
allow them. Such states are often used to generate warning messages, raise alarms, or instigate corrective
actions, so we still need to define precisely what the policy conditions are so that we can specify how to
check them.
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3.1 Kinds of Module

We identify two kinds of module that we find most commonly used: global objects and state components.

3.1.1 Global Objects

Global objects are objects declared at the top level, in a separate file. In general, they are not advised,
because they have too wide a scope. But there are typically a collection of, in particular, types that
we need in many places, such as identifiers for various kinds of entity, and it is convenient to collect
these in one global object. Dates and a few functions or operators like < to compare them, and perhaps
also periods modelled as pairs of dates, or a date and a duration, are other common candidates. Global
objects should not include any part of the state.

Another guide to when types should be in a global object is that types visible to users, i.e. types that
occur as parameters to user functions or in the results of user functions, should generally be defined in
one.

3.1.2 State Components

Most modules will contain a type modelling (a part of) the state, together with functions to observe it
and generate values of it, and we term these state components. Generators usually include functions to
change state values, and perhaps also to create them. The type is often called the type of interest of the
module. Such modules are usually defined as schemes, and typically instantiated within others, as we
will see in Section 3.3. Modules should have only one type of interest.

We write separate modules for each state component because we can then enforce a discipline that the
part of the state within the module is only accessed through the functions defined for it. This enables
us, for example, to change the way that part is modelled without affecting anything else, so long as we
maintain the original properties. Such a technique is known as encapsulation through information hiding.

Object oriented approaches to program design follow the same ideas: they typically call the observers
and generators methods.

The discussion in the following sections is almost entirely concerned with state component modules, and
we will in particular talk of the type of interest, the observers and the generators of a module.

3.2 Abstract and Concrete Modules

There are various ways of writing modules, according to way in which the type of interest is defined. We
will illustrate these with the idea of a bank account, seen as a record of transactions. We will keep the
example very simple, as our purpose here is not to describe banking in detail but to show approaches
to modelling. We assume that transactions have a date (the type Date defined in a global object T),
an Amount (similarly defined globally, with + also defined for it), and some other information as yet
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undetermined. We will need functions open, to create a new account, add to add a transaction, and

balance to calculate the current balance.

We start with the easiest specification to write, which is concrete as it uses a concrete model of the type

of interest Account: an account is an ordered list of transactions:

scheme CONC_ACCOUNT =
with T in class

type
Account = {| trl : Transaction*  is_ordered(trl) |},
Transaction ::
date : Date
amount : Amount
info : Info,
Info
value

open : Account = (),

add : Transaction x Account = Account

add(tr, ac) = (tr)"ac
pre can_add(tr, ac),

can_add : Transaction x Account — Bool

can_add(tr, ac) =
case ac of
() = true,
(h)"t — date(h) < date(tr)
end,
balance : Account - Amount
balance(ac) =
case ac of
() >0,
(h)"t — amount(h) + balance(t)
end,

is_ordered : Transaction* — Bool
is_ordered(ac) =
case ac of
() = true,
(L) — true,

(h1, hy)"t — date(hs) < date(h;) A is_ordered((hs)"t)

end
end

We realised that add needs to be partial, since we should not be able to add a transaction older than
the latest one in the account. We adopt a useful convention to define a function can f to express the
precondition of a function f. This allows writers of functions elsewhere to check the precondition using

can_f, and to be somewhat insulated from changes to can_f that might be made later.
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This very simple specification raises some immediate questions, such as whether open should be a function
with some parameters, such as the date of opening, or information about the account holder? This is
at least in part a question about the requirements, and is typical of the questions that naturally arise
from the specification that can indicate missing requirements (either missing from the requirements or
missed by us in reading them). We might similarly wonder, since there is a function to add a transaction,
if there should also be one to delete or change an existing transaction. And if so, should transactions
have identifiers? Similarly, if an account can be opened, can it also be closed, and if so, do its records
disappear?

There is also a question about the type Transaction: Should it be in a module of its own? We might
consider this not necessary, because it is so simple: the functions needed to generate and observe it
are already embodied in its definition and the module would have nothing more to define. But in fact
the appropriate conclusion here is that Transaction should probably be defined in the global object T,
because it is visible to users, who will have available some function to display or print their account. In
the following versions we will assume that Transaction is defined in T. We also realise another missing
or missed requirement: that we need another function to report on transactions:

value
transactions_since : Date x Account — Transaction™
transactions since(d, ac) = ( tr | tr in ac » d < date(tr) )

The concrete module CONC_ACCOUNT says that an account is precisely its sequence of transactions. But
this may not be an adequate model. It might in the final implementation be an archive of previous
years’ transactions plus this year’s stored separately and more immediately available. And balances are
in practice not calculated from the beginning each time, but perhaps stored and updated with each
transaction. Such a balance would be an example of dependent information not included in the initial
specification.

Here is an abstract version of the account module:

scheme ABS_ACCOUNT =
with T in class
type
Account
value
/* generators */
open : Account,
add : Transaction x Account = Account,
/* observers %/
can_add : Transaction X Account — Bool,
balance : Account — Amount,
transactions_since : Date x Account — Transaction*
axiom
[can_add_open] Y tr : Transaction « can_add(tr, open) = true,

[can_add_add ]
V trg, tr; : Transaction, ac : Account *
can_add(try, add(trg, ac)) = date(trg) < date(try)
pre can_add(trg, ac),
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[ balance_open | balance(open) = 0,

[balance_add ]
V tr : Transaction, ac : Account »
balance(add(tr, ac)) = amount(tr) + balance(ac)
pre can_add(tr, ac),

[transactions_since_open] V d : Date « transactions_since(d, open) = (),

[transactions_since_add ]
VY d : Date, tr : Transaction, ac : Account -
transactions_since(d, add(tr, ac)) =
if d < date(tr) then (tr) transactions_since(d, ac)
else () end
pre can_add(tr, ac)
end

Abstract specifications in this style define the type of interest Account as an abstract type, and the
constants and functions as signatures only. Axioms then relate observers to generators.

Most people do not find such specifications easy to write. There is an alternative style that gives a
specification that is also abstract, in that it allows the same room for the type Account to be developed
further, but is easier to write — which means less likely to contain errors!

We define the type Account abstractly, and then define one or more main observers that return precisely
the type we used in the concrete version CONC_ACCOUNT. (We would use more than one observer if the
concrete type had been a product or record.)

scheme ACCOUNT =
with T in hide transactions, balance; in class
type
Account,
Transactions = {| trl : Transaction* » is_ordered(trl) |}
value
transactions : Account — Transactions,

open : Account » transactions(open) = (),

add : Transaction x Account — Account
add(tr, ac) as ac’ post transactions(ac’) = (tr) transactions(ac)
pre can_add(tr, ac),

can_add : Transaction x Account — Bool
can_add(tr, ac)
as b post
b =
case transactions(ac) of
() — true,
(h)"t — date(h) < date(tr)
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end,

balance : Account — Amount
balance(ac) = balance; (transactions(ac)),

balance; : Transaction* — Amount
balance; (trl) =
case trl of
() =0,
(h)"t — amount(h) + balance; (t)
end,

transactions_since : Date x Account — Transaction*
transactions since(d, ac) = ( tr | tr in transactions(ac) « d < date(tr) ),

is_ordered : Transaction* — Bool
is_ordered(ac) =
case ac of
() = true,
(_) = true,
(h1, hy)"t — date(hy) < date(hy) A is_ordered({hs)"t)
end
end

Here the type Transactions is just a convenience, and the main observer is transactions. Constants are
defined by implicit value definitions, and functions by post conditions. The specification of can_add says
that the new transaction date being no earlier than the last transaction in the account is a necessary, but
not a sufficient condition for add: we envisage the possibility of adding some means of closing an account,
perhaps, or insisting that the balance must always be non-negative. But we are sufficiently sure to define
balance and transactions since in terms of transactions. The main observer transactions is not
defined: we can only do so when we decide exactly what the type Account will be. It is usually hidden,
and we have also hidden the extra function balance; we used to define balance.

The concrete version CONC_ACCOUNT can easily be obtained as a refinement of ACCOUNT by implementing
the main observer transactions as the identity function. But there are many other possible refinements
with a richer state with more information, such as adding the possibility for accounts to be opened and
closed, or including the current balance.

3.3 Module Hierarchies
There are several suggested principles in creating a collection of modules to model a system:

e Each module should have only one type of interest, defining functions to create, modify and observe
values of the type.

e The modules should as far as possible form a hierarchy: each module below the top one should be
instantiated in only one other, its parent, as an embedded object, and its functions should only be
called from its parent.
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This leads naturally to a top-down style of specification and development. As we decide on the concrete
type for a module, perhaps involving several components, then as long as these component types are
non-trivial we define new modules for them as children of the original.

The restriction to a hierarchy sometimes seems more complicated than, say, a collection of global objects
each defining one part of the state, with objects able to call functions in any others. But such designs
have definite disadvantages:

e The many interdependencies mean that changes to a module may affect many others, so maintenance
is more difficult.

e They are harder to test individually. With a hierarchy there is natural testing order that tests
children before parents.

e In a concurrent system it is hard to ensure that the system will not deadlock. Following the
guidelines for developing concurrent systems from sequential ones in Section 4.2 means that freedom
from deadlock is guaranteed by a simple syntactic check.

It may not be clear why we suggested using embedded objects to link child modules to their parents.
There are three possibilities to use one module (the child) in another (the parent), which we consider in
turn:

1. Merging the specifications textually into a single module. This is clearly not very sensible. Apart
from breaking the suggestion that there only be one type of interest per module, the resulting
large module is hard to read, the child cannot be reused elsewhere, it is tedious to hide the child
components (as they must be hidden individually), and there may be name clashes between the
two parts.

2. Writing the parent as an extension (extend S with ... where S is the scheme defining the child).
This gives two separate modules, and so is readable, and the child module S can be reused, but it
still suffers from the disadvantages that it is hard to hide the child components, and there may be
name clashes between the two parts. (We typically use extend to add definitions to an existing
type of interest, or perhaps to make a subtype of it, such as defining an interest-bearing deposit
account by extending a basic account specification.)

3. Instantiating the child as an object within the parent. The separate modules are small and readable,
the child is reusable, the child can be hidden merely by hiding its object identifier, and name clashes
cannot occur because within the parent specification all the entities from the child have an object
identifier qualifier. Hence this is normally the best solution.

3.4 Sharing Child Modules

Consider the proposed module structure in Figure 1.

If we take the advice about instantiating children as objects in parents, then in SYS we get two objects,
called S; and Ss perhaps, and in each of SUB_SYS; and SUB_SYS, we get an object B, say, instantiating
BUFFER. How many buffers are there? There are two. We can see this because in SYS they have names
S1.B and S,.B, and RSL is constructed so that different names imply different objects: there is no
possibility of “aliasing”, of having different names for the same variable, channel or object. Different
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SYS

SUB_SYSL SUB_SYS2

BUFFER

Figure 1: Sharing a child module.

objects will have different variables, different channels, and different embedded objects, even if they are
instantiations of the same scheme.

If the buffers are intended to be different, this is fine. But what if the two sub-systems want to share one
buffer, perhaps for passing information between them? This will break the normal idea of hierarchical
design that child modules are independent, since a call in SYS of a function in S;, say, can result in a
change in state of both B and S,. But sometimes it is necessary. We then have to be more careful than
usual how we call child functions from SYS.

If we need such a design, there are two ways to achieve it. The first is to make a global object B, say, from
BUFFER, and use this in both SUB_SYS; and SUB_SYS,. Now there is one buffer (because there is only one
name for it) and so the two sub-systems must be sharing it. But other modules can also access it. What
we probably want is for the buffer to be shared between the sub-systems, but be hidden within SYS.

The second solution us to use parameterisation. We make BUFFER a parameter of both SUB_SYS; and
SUB_SYS,:

scheme SUB_SYS; (B : BUFFER) = ...
scheme SUB_SYS,(B : BUFFER) = ...

and in SYS we define the following objects:

object
B : BUFFER,
S; : SUB_SYS;(B),
S, : SUB_SYS2(B)

Now we can see that there is only one buffer object B, which is defined in SYS and can be hidden there.
The objects of the two sub-systems now share this buffer because any mention of a name prefixed by B
in their specifications is now bound to that name defined in the object B in SYS.
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4 The RAISE Method: Developing Specifications

In this section we consider developing the initial, applicative specification into a program. We will see
that there is a standard “development route” that we often use, that develops from an applicative to
an imperative style, and possibly on to a concurrent style. We will also discuss what it means for a
development to be “correct”, and how we can ensure correctness.

4.1 Imperative Modules

Our experience is that applicative modules, ones without any variables, following a “functional program-
ming” style, are the easiest to write. This may seem surprising to people used to writing in imperative
languages like C++ or Java, but dependence on variables also seems to encourage a style that is pro-
gramming rather than specification. The idea of specification is, ideally, to write as little as possible, to
model the data structures in a minimal way, trying to avoid making premature design decisions about
data structures and algorithms. Above all, the aim is to meet the requirements, and the less you write
the less there is to validate against the requirements.

If you want to do proof, then proofs are certainly much simpler based on applicative specifications.

But the intended implementation style is likely to be imperative. The comparative run-time efficiency of
imperative programs over applicative ones is often exaggerated, but there can be definite advantages in,
for example, using iteration instead of recursion if the depth of recursion is deep.

Fortunately, it is very simple to transform an applicative specification into an imperative one. This is
normally only done when the design has reached the point where the type of interest is concrete, so we
take the previous concrete specification CONC_ACCOUNT as an example. Here is the imperative version:

scheme IMP_ACCOUNT =
with T in hide Account, ac in class

type

Account = {| trl : Transaction* « is_ordered(trl) |}
variable

ac : Account := ()
value

open : Unit — write ac Unit
open() = ac := (),

add : Transaction — write ac Unit
add(tr) = ac := (tr)"ac
pre can_add(tr),

can_add : Transaction — read ac Bool
can_add(tr) =
case ac of
() = true,
(h)"t — date(h) < date(tr)

end,
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balance : Unit — read ac Amount
balance() = balance(ac),

balance : Account — Amount
balance(ac) =
case ac of
() =0,
(h)"t — amount(h) + balance(t)
end,
transactions_since : Date — read ac Transaction*
transactions since(d) = ( tr | tr in ac « d < date(tr) ),

is_ordered : Transaction* — Bool
is_ordered(ac) =
case ac of
() = true,
(_) = true,
(h1, ha)"t — date(hs) < date(hi) A is_ordered((hs)"t)
end
end

(The type Transaction is omitted because, following the discussion earlier, it is now assumed to be
defined in the global object T.)

The changes from CONC_ACCOUNT are quite straightforward:

A variable is defined to hold values of the type of interest. This is usually initialised if there is an
obvious value to use. If the type of interest is a record or product, several variables may be used,
one for each component.

e The type of interest is removed from the parameter and result types of functions, and if this leaves
nothing as a parameter or result type, Unit is inserted.

e Generators are given write access to the variable(s); observers are given read access.

e Formal parameters of the type of interest are removed. References to them in the bodies of functions
are replaced with reference to the variable(s).

e Generators include assignment(s) to the variable(s) of the new value generated.
e Constants like open are defined as functions in the way illustrated.

e The type of interest and the variable(s) are hidden.

Sometimes, especially with recursive functions, we define the imperative function in terms of the corre-
sponding applicative one, as with balance.

The transformation is very straightforward and easily checked. There is a theorem (explained in detail
in the RAISE method book [5]) that the resulting imperative module has the same properties as the
applicative one. To be more precise, there is a way of rewriting the properties of the applicative one
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into corresponding imperative ones that are guaranteed to hold for the imperative version. Intuitively,
the applicative and imperative versions “behave in the same way”. For example, starting with empty
accounts and adding the same transactions to both will give the same observed values for balance and
transactions_since.

This transformation is often applied to leaf modules in the hierarchy, i.e. to modules with no children,
but can, as we shall see, be applied at any level in the hierarchy, with the children left applicative.

Parent modules normally have no variables: their state is the state of their children. For parent modules
with imperative children the type of interest disappears altogether, and the changes to signatures also
involve the removal of this type. Bodies change by calling the new imperative functions of the children,
which is just a matter of removing the formal parameters corresponding to the type of interest. Since
there are no such parameters needed for the children’s functions this is simple.

To illustrate, suppose for simplicity that there is only one account per account-holder, and there are
separate modules for storing information about account-holders and their accounts. Then the applicative
parent module of CONC_ACCOUNT, ACCOUNT_AND_HOLDER, might have contained:

object
A : CONC_ACCOUNT,
H : HOLDER
type
Account_and holder ::
account : A.Account
holder : H.Holder -- type of interest of HOLDER
value
open : Holder_info — Account_and_holder
open(i) = mk_Account_and_holder(A.open, H.new(i))

The imperative version will contain:

object
A : IMP_ACCOUNT,
H : IMP_HOLDER
value
open : Holder_info — write A.any, H.any Unit
open(i) = A.open() ; H.new(i)

We see that in the imperative version applicative modules are replaced by their imperative versions, and
the type of interest disappears entirely.

We know that open is a generator, so it may change variables in the child modules. But we don’t know
what the variables are: they are hidden, the state of these modules is encapsulated. So we use universal
accesses to indicate that the generator open may change any variables in the two child modules.

Since we know from the rules of hierarchical design that child modules cannot call each others’ functions,
their states are independent: a change in one cannot in itself affect the other. So it doesn’t matter in
which order we call the functions A.open and H.new: we could even invoke them in parallel.
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This method of making leaf modules imperative encounters a difficulty when there is a collection of data
at lower levels. If we replace each applicative object with one imperative one, how can we hold data
about many accounts, for example? We illustrate by considering the same example at the level above.
An applicative module ACCOUNTS, say, might have contained:

object

AH : ACCOUNT_AND_HOLDER
type

Accounts = Ac.no # AH.Account_and_holder
value

open : Acno x Holder_info x Accounts = Accounts
open(no, i, acs) = acs T [no — AH.open(i) ]
pre ~ exist(no, acs),

exist : Ac_no x Accounts — Bool
exist(no, acs) = no € acs

The simplest solution is to make this module imperative, and keep its children applicative. Their functions
are simply those used to create, modify, and observe components of the values held in the variable(s)
of the parent. So instead of making ACCOUNT_AND_HOLDER and its children imperative, we would change
ACCOUNTS to:

object
AH : ACCOUNT_AND_HOLDER - - still applicative
type
Accounts = Acno  AH.Account_and_holder
variable
acs : Accounts := []
value
open : Acno x Holder.info = write acs Unit
open(no, i) = acs := acs T [no — AH.open(i) ]
pre ~ exist(no),

exist : Ac_no — read acs Bool
exist(no) = no € acs

The variable acs holds all the accounts in a map. This is a natural style to use if the variable acs is to
be implemented as a database. The applicative child modules are a specification of the database design.

It is also possible to specify ACCOUNTS with imperative child modules, when the object declaration in
ACCOUNTS would be replaced by an object array. This is the way to specify ACCOUNTS if we want to program
each account as a separate object, rather than, as above, using a single database for all the accounts. It
is complicated by the fact that object arrays in RSL are static, so that all accounts potentially exist from
the start, and we have to include information about which account numbers are currently “live”. Then
our imperative version of ACCOUNTS would look something like:

object

Report No. 249, March 2002 UNU/IIST, P.O. Box 3058, Macau



The RAISE Method: Developing Specifications

47

AH[no : Acno] : IMP_.ACCOUNT_AND_HOLDER - - imperative
variable

live : Acno-set := {}
value

open : Acno x Holder_info = write AH.any, live Unit
open(no, i) = AH[no].open(i) ; live := live U {no}
pre ~ exist(no),

exist : Ac.no — read live Bool
exist(no) = no € live

4.2 Concurrent Modules

If a concurrent system is required, for example if the system is to have multiple users at the same time, or
is to be distributed, concurrent modules can be developed from the imperative ones. (It is also possible
to go directly from applicative to concurrent if the specification is simple.) Each imperative module
with variables is transformed into a server. A server has a main process that is normally a while true
loop. The purpose of the server is to ensure that the interactions with the imperative module, which is
embedded in the concurrent one, are atomic. When one user starts an interaction others are forced to
wait until the interaction is complete. The concurrent module is like a wrapper of the imperative one, to
mediate interactions with it. To illustrate, we show a concurrent version of ACCOUNT:

scheme C_ACCOUNT =
with T in hide I, C, server in class
object
I:IMP_ACCOUNT,
C:
class
channel
open : Unit, add : Transaction, add_res : Add_result,
balance : Amount, since : Date, since_res : Transaction*
end
value
init : Unit — in C.any out C.any write L.any Unit
init() = L.open() ; server(),

server : Unit — in C.any out C.any write l.any Unit
server() =
while true do
C.open? ; Lopen()
I
let tr = C.add? in
if I.can_add(tr) then Ladd(tr) ; C.add-reslok
else C.add_res!fail end
end

[
C.balance!I.balance()

I
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let d = C.since? in C.since res!I.transactions since(d) end
end,

open : Unit — out C.open Unit
open() = C.open!(),

add : Transaction — out C.add in C.add_res Add_result
add(tr) = C.add!tr ; C.add res?,

balance : Unit — in C.balance Amount
balance() = C.balance?,

transactions_since : Date — out C.since in C.since_res Transaction*
transactions_since(d) = C.sinceld ; C.since_res?
end

We see that the imperative module IMP_ACCOUNT is used to define an embedded object I that is hidden.
A number of channels are defined for communicating the parameters and results of the functions. These
can be defined in an object, here C, which is just a convenience for hiding them collectively. An init
process is defined to initialise the object I and then start the server. The server is a loop containing
an external choice, one choice for each function. It simply inputs parameters (if any) on a channel, calls
the appropriate function from I, and outputs results (if any) on another channel. Finally there is a set
of interface processes which are the functions that may be called to access the module. There must be
one for each choice in server, and it must do the converse of the inputs and outputs in that choice.

If this design approach is followed and checked then it is impossible for the module to deadlock, and
concurrent calls of the interface processes will be atomic, i.e. they will be executed sequentially in some
arbitrary order.

As we discussed earlier in Section 2.9, we need to change partial functions like add into total ones. So
we added an Add_result type, defined as a variant with two values ok and fail to the global object T
and return an appropriate value of this type. Since can_add was previously only included for the parent
module to check the precondition of add, it may now be redundant and is not included in the concurrent
version: it could easily be included if still required.

It should be apparent that the concurrent version of ACCOUNT behaves just like the imperative one. All
we have done is protect the imperative module against concurrent accesses to it interfering with each
other. This theorem is formalised in the RAISE method book [5].

In the transformation to a concurrent system, children of the imperative one with variables remain
applicative. Parent modules are changed in minor ways as follows:

¢ Instantiations of imperative modules are replaced by instantiations of the concurrent ones.

e An init process is added that calls the init processes of all its children in parallel. This means
there will be an init process in the top level module that will, when invoked, initialise and start
the servers of all its children running in parallel.

e Calls of previously partial functions need to be changed because they will have new result types.
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e Sequential invocations of two or more functions in different children are normally replaced by
concurrent invocations. This is safe, because we know that hierarchical design ensures that there
can be no interference between the state changes of different children. So different evaluation orders
will make the same changes and return the same results.

4.3 Development Route

The overall suggested development route is illustrated in Figure 2. The initial vertical line indicates
development of data structures and algorithms from an initial, abstract specification. The development
is done using an “invent and verify” strategy. That is, design decisions are made and reflected in a
new specification. This can then be verified, shown to be correct, perhaps by proof, according to the
rules discussed later in Section 4.6. The transformations to imperative and then concurrent versions
may be done if needed, and are applied to concrete modules (modules with concrete type of interest).
Some further refinement may be done to particular functions in the imperative and concurrent versions
if needed. For example, expressions involving quantifiers might be developed into loops. Techniques for
doing this are described in the RAISE method book [5].

Applicative | Imperative | Concurrent
Abstract ‘
Concrete | ‘oo o R R 1
[ Refinement - = Transformation

Figure 2: The RAISE development route.

4.4 Asynchronous Systems

Some systems, particularly distributed ones, will need further development into asynchronous systems,
typically by introducing buffers between components instead of the “remote procedure call” design implied
by the concurrent specification described in the previous Section 4.2. In outline, to make a system
asynchronous, we:

e Define a collection of buffers to carry request and result messages.

e Replace calls of functions in child modules with functions that send request messages and then wait
for replies to appear in the appropriate buffers.
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e In modules with servers, “wrap” the interface processes with ones that wait for messages in appro-
priate buffers, call the interface processes to obtain results, and then send replies containing those
results. These wrappers are defined as while true loops, so that they continually wait for request
messages.

Apart from delays, and provided the buffers are fault-free, the asynchronous system will behave just
like the synchronous one. Fault tolerance can be introduced by, for example, having a policy that every
request is answered by an acknowledgement, and by, in the final implementation, including time-outs on
the waits for replies. [15] describes such a distributed development.

4.5 Validation and Verification

Validation is the check that we have written the right specification, i.e. that we have met the requirements.
It has nothing to do with internal properties: one can have a perfectly satisfactory description of a tunnel
when what is wanted is a bridge, and no detailed inspection of the tunnel’s description can uncover the
fact that it is not what is required. Such a gross disparity between requirements and specification is
unlikely, of course, but the basic fact remains: to validate a specification we must look outside it, at the
requirements

Validation therefore cannot be formalised because, usually, requirements are written in natural language.
But it is a very important step: if we make mistakes in the initial specification then the following effort
may be wasted! Many software projects have failed because requirements were incomplete, inconsistent,
infeasible given the effort available, or misunderstood. Note that we are concerned with errors in the
requirements themselves as well as with errors we make in modelling them. So we try in writing specifi-
cations to actively consider whether what we read seems sensible, complete and consistent. In creating
a formal model we tend to come up with many questions, and generating these questions to ask of the
people responsible for the requirements (the customers) has proved to be extremely beneficial in detecting
problems at the start of the project. We try to be abstract, but that is not the same thing as being vague!

The main technique in validation is to check that each requirement is met. When we have written the
initial specification we go back to the requirements and for each issue that we can find, we should conclude
one of the following:

e It is met.
e It is not met, and we need to change the specification.

e It is not met because we think it is not a good idea (because of infeasibility, or for consistency with
other parts, perhaps) and we need to discuss with the customers.

e It will be deferred to later in the development. This applies to “non-functional requirements” like
the intended programming language or operating system, or performance requirements, but also to
things that we have not yet designed, like aspects of the user interface or particular algorithms to
be used. In this case we add it to a list of the requirements against which later development steps
will be validated. We need, of course, to have in mind a development strategy that will allow such
requirements to be met eventually.

There are also other validation techniques we can use:
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e With experience, we can read the specification to look for properties that it will have that are
not mentioned in the requirements. To take a trivial example, when we specify data storage, we
naturally ask if it may become full, and if so what should happen. It may be that the user has not
considered the possibility. Another example is whether a data structure should be initialised, and
if so to what? This is typical of the kind of issue that may seem so obvious to the customers, who
know the domain well, that they omitted to mention it. Scenarios, or use-cases, often lack essential
but, to the customer, “obvious” steps. We should set up a formal procedure of queries to customers
and their answers being documented.

e We should develop system tests (test cases and expected results) along with the specification. Doing
this often helps to clarify the requirements, and these can also be shown to the customers, who will
usually find them easier to read than the formal specification [16, 17].

e It is possible to rewrite the requirements from the specification. This is an expensive task, but
generally produces requirements documents that are clearer, better structured, more concise, and
more complete than the originals.

e We can prototype all or part of the system, perhaps by doing a quick and simplified refinement of
the abstract types in it, and using the translators to SML or C++ (see Section 4.9) in the RAISE
tools to run some test cases. We can also let the customers use it to get more feedback from them.

Providing early feedback to the customers in the form of queries, test cases, rewritten requirements,
or prototypes has the added advantage of committing them to what has been done so far, and helps
demonstrate to them the added cost and danger of later requirement changes, the bane of every software
project manager’s life! We try to make the initial specification a contract between us and the customers.

Verification is the check that we are developing the system correctly, so that the final implementation
conforms to the initial specification. It must come after validation, since it assumes the correctness of
the initial specification. We discuss it as part of the next section on refinement.

4.6 Refinement

We mentioned earlier that we develop by “invent and verify”: we invent a more concrete version of a
module and then verify that it is correct with respect to previous one. The formal relation that must
exist between the two is the refinement relation, sometimes also called the implementation relation.

The refinement relation needs to be transitive: we want to develop, say, from Ag to A; and then from A;
to A, checking refinement at each step, and be assured that A, must refine 4y. Additionally, refinement
needs to be monotonic with respect to building modules from other modules. Suppose module A is
developed through version Ay to the final Ay as above, and module B has first version By that instantiates
Ay and is developed (perhaps by other people) to Bj, say, that still instantiates Ag. Now we want to
integrate the final versions. We write module Bs that differs from B; only in substituting the identifier Ay
for the identifier Ay: see Figure 3. We want, provided A, refines Ag and B; refines By, that By should be
guaranteed to refine B; and hence By. Monotonicity is what gives this guarantee. If this were not true we
could not conveniently develop modules separately. Effectively Ag is a contract between the developers
of B and the developers of A: it says to the developers of B what A will provide, and to the developers of
A what they must provide. Just how the latter group does this should be of no concern to the former.

The refinement relation should also hold in instantiations of parameterised of schemes: the class of each
actual parameter should be a refinement of the class of the corresponding formal parameter.
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scheme Ag = ... scheme By = ... object A : A ...

scheme A1 = ...

scheme Ay = ... scheme B; = ... object A : Ag ...
refinement substitution .
scheme Bs = ... object A : Ay ...

Figure 3: Separate development.

The formal definition of refinement can be found in the RAISE method book [5]. Here we give an
intuition. It has two components. For A; to refine Ag we require:

e The signature of Ay must include the signature of Ag. That is, A; must contain all the entities (types,
values, variables, channels, and objects) with the same names and the same maximal types or, for
objects, with classes that are in the same relation. This relation, termed static implementation,
was introduced earlier in Section 2.11. The relation is necessary for the monotonicity property: we
need to be able to replace references to A¢ with references to A; in other modules without causing
type or scope errors. The signature we are concerned with does not include hidden entities: these
do not need to be included in refinements. The relation is also one of inclusion: A; may have more
entities than Ag.

o All the properties of Ay must hold in A;. Properties may be expressed as axioms, but also include
definitions of constants and functions, initial values of variables, and the restrictions in subtypes.
Property preservation is clearly transitive.

The first of these conditions can be checked statically, and the RAISE tools do this as part of type
checking. The second is not statically checkable, and in general requires proof for full verification. But
the “R” in RAISE stands for “rigorous”: the method allows for the conditions to be checked informally,
by hand. The amount of proof we do will depend on how critical the system is, and how much budget we
have. Proof is expensive because it involves considerable time and also skilled, experienced people to do
it. It is unfortunately the case that the kinds of proofs that arise in software development are generally
beyond the capabilities of automated proof tools.

4.7 Lightweight Formal Methods

It is possible to use formal methods without proof, and even without refinement: the initial specification
is sufficient to explore the problem and provide a basis for implementation. Such use of a formal method is
sometimes called “lightweight”. It is found that most of the benefit of a formal method is in analysing and
capturing requirements, in identifying and resolving requirements issues at the start of development, and
in providing a sound basis for implementation. If the specification is not too complicated, implementation
may be done directly from it.
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There are some formal techniques that we can employ, that may or may not employ proof, that we can
adopt to increase confidence in specifications: confidence conditions and theorems. We consider these in
turn.

4.8 Confidence Conditions

Confidence conditions are conditions that should probably be true if the module is not to be inconsistent,
but that cannot in general be determined as true or false by an automatic tool. The following conditions
are generated by the RAISE tools:

1. Arguments of invocations of functions and operators are in subtypes, and, for partial functions and
operators, preconditions are satisfied.

2. Values supposed to be in subtypes are in the subtypes. These are generated for

e values in explicit value definitions;

e values of explicit function definitions (for parameters in appropriate subtypes and satisfying
any given preconditions);

e initial values of variables;
e values assigned to variables;

e values output on channels.
Subtypes are not empty.
Values satisfying the restrictions exist for implicit value and function definitions.

The classes of actual scheme parameters implement the classes of the formal parameters.

A

For an implementation relation, the implementing class implements the implemented class. This
gives a means of expanding such a relation or expression, by asserting the relation in a theory and
then generating the confidence conditions for the theory.

7. A definition of a partial function without a precondition (which generates the confidence condition
false).

8. A definition of a total function with a precondition (which generates the confidence condition false).

Examples of all the first 4 kinds of confidence conditions listed above are generated from the following
intentionally peculiar scheme (in which line numbers have been inserted so that readers can relate the
following confidence conditions to their source):

1 scheme CC =
2 class
3 value

4 x1 : Int = hd <..>,
5 x2 : Int = f1(-1),
6 x3 : Nat = -1,

7 f1 : Nat -"-> Nat
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8 f1(x) is —x

9 pre x > 0

10 variable

11 v : Nat := -1

12 channel

13 c : Nat

14 value

15 g : Unit -> write v out c Unit
16 g is v := -1 ; c!-1

17  type

18 None = {| i : Nat :- i < 0 |}
19 value

20 x4 : Nat :- x4 < 0,

21 f2 : Nat -> Nat

22 f2(n) as r post n + r =0

23 end

This produces the following confidence conditions (which are all provably false). The first part of each
condition is a reference to its source in the form file:line:column:

CC.rsl:4:19: CC:
-- application arguments and/or precondition
let x = <..> in x "= <..> end

CC.rsl:5:18: CC:
-- application arguments and/or precondition
-1 >=0 /\ let x = -1 in x > 0 end

CC.rsl:6:14: CC:
-- value in subtype
-1>=0

CC.rsl:8:5: CC:
-- function result in subtype
all x : Nat :- (x > 0 is true) => -x >= 0

CC.rsl:11:13: CC:
-- initial value in subtype
-1>=0

CC.rsl:16:17: CC:
-- assigned value in subtype
-1>=0

CC.rsl:16:24: CC:
-- output value in subtype
-1>=0

CC.rsl:18:26: CC:
-- subtype not empty
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exists i : Nat :(- 1 < 0

CC.rsl:20:8: CC:
-- possible value in subtype
exists x4 : Nat :- x4 < 0

CC.rsl:22:5: CC:
-- possible function result in subtype
all n : Nat :—- exists r : Nat :- n+r =0

Tt is usually sufficient to carefully inspect confidence conditions rather than trying to prove them. Most of
the time it is easy to see that the conditions are OK, but they are a good way to find errors, particularly
in the first category where we apply a function forgetting its precondition.

There is a danger when proving confidence conditions, since they can indicate an inconsistency in the
module. For example, scheme CC above asserts through the definition of x3 that —1 is in the type Nat.
This is false, and so this definition implies the property false. CC is therefore inconsistent and anything
can be proved about it. In particular, all the provably false confidence conditions above can also be
proved true! So if we try to prove confidence conditions we must proceed with care.

4.8.1 Theorems

Theorems are formal statements about specifications that we state separately: they are intended to be
consequences of the specifications, not part of their definitions. They can be proved, formally or by hand,
or just examined carefully. Even when not proved they can be useful as part of the documentation.

Theorems can be stated in RAISE by means of a theory module. A theory takes the form:

theory name :
axiom

end

where ... is one or more axiom definitions. To support theories there are two extensions to the RAISE
syntax that are useful:

e The implementation relation - C; < Cp, where C; and Cq are class expressions. The implementation
(or refinement) relation was described in Section 4.6.

e The class scope expression in C I expr, where C is a class expression and expr is a boolean expression
which may reference entities defined in C.

Generating confidence conditions for an implementation relation will expand it into its constituent prop-
erties, allowing us to examine them without necessarily proving them, or perhaps only proving some.

Typically if we want to do proof we will concentrate on critical properties. For example, if there are system
consistency properties that should always be maintained, we can formulate as theorems the property that
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they are maintained by our generators (provided any preconditions hold). For example, suppose in scheme
A, gen is a generator with a parameter of type U, T is the type of interest, and can_gen is a function
expressing the precondition of gen, so the definition of gen looks like:

value
gen: Ux T3 T
gen(u, t) = ...

pre can_gen(u, t)

Then the theorem we would write is:

mAFYu:U;t:T-
consistent(t) A can_gen(u, t) = consistent(gen(u, t))

Consistency conditions are a good choice for doing proofs. Generating the wrong result values of functions
often shows up in testing, but creating inconsistencies in the system may not show up until some time
after the inconsistency was created, and so it may be be hard to find them in testing and hard to identify
when and how an inconsistency was originally generated.

Inclusion of checking consistency is also a good thing to include in test cases. But only with a proof can
one be sure that a generator will never cause an inconsistency.

Finally, one should not forget the value of code reading by peers. This is a comparatively cheap and very
effective means of discovering errors, and can be applied to specifications as much as to code. In fact it
is generally easier to read specifications than programming language code. They are more abstract, and
are intended to be read by people rather than machines.

4.9 Generating the Executable Program

The traditional development route is from RAISE to a programming language like C++ or Java. The
RAISE tools available from UNU/IIST’s web site www.iist.unu.edu include a translators from a subset
of RSL to C++ and SML (though the latter is intended mainly for prototyping and testing). Parts of
specifications may need to be translated to SQL, say, if part of the specification is intended to specify a
database. The original RAISE tools [1] also include a translator to Ada. There is advice on translation
by hand, including translation of concurrency, in the RAISE method book [5].

But there are many other possibilities. [18], for example, uses AWK as the implementation language.

5 When Not to Use RAISE

We do not mean to give the impression that RAISE or a similar software specification language should
be used to define all software systems. There are exceptions, and we give some examples in this section.
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5.1 There is a Special-Purpose Formalism

There are many special-purpose formalisms (sometimes with associated tools) that can sometimes be
used in preference to a general purpose language like RSL. For example, BNF is a standard notation
for defining grammars, and has associated tools like flex and bison for generating parsers and building
abstract syntax trees. BNF is well defined, and provides a well-known, convenient, and compact notation.
Copying this in RSL could be done, but the result would be less concise and still require the equivalent
of flex and bison to be developed.

Real-time systems, ones which depend heavily on precise timing, such as real-time schedulers and process
control systems, are often better analysed using a special-purpose formalism like Duration Calculus (DC)
[19]. (There is some ongoing work to add real-time features to RSL [20, 21, 22].)

Another example is defining semantics of languages. There are notations like Structured Operational
Semantics [23] that have their own compact notations that would be much less readable in RSL.

5.2 The Effort is Not Worth the Gain

Sometimes there is a language adapted to a particular kind of application that allows the implementation
to be written at a level that is very close to how one would specify it. An example is the RAISE tools.
These were written in a language Gentle [24] that is a high level language intended for use by compiler
constructors. The RAISE tools were written in this language without writing a specification of them.
The reason is that for the type checker, for example (the first tool written and a basis for all the others)
it was felt that the scope and type rules could not have been written at a much more abstract level: the
actual error messages, and some details about input and output to files, which were largely copied from
another system, would have been almost the only things left more abstract. So in this case the executable
program (Gentle is executable in that it translates to C) is also the specification. There is, of course, a
definition of the semantics of RSL (using a special-purpose formalism) that includes the static semantics
(the scope and type rules) but the tools were not developed with close reference to this (and RSL has
also been extended): the tool developer had a very good working knowledge of RSL having worked on
its original design.

Another, rather different, example is graphical user interfaces. The top level RAISE specification of a
system defines the functions that may be accessed by users, which may be people or other software. In
the case of people, graphical user interfaces are common, and there are many languages and tools to aid
their construction. A main feature of such interfaces is that they are functionally simple. They help users
select the function they want to invoke (often with menus or buttons), they ask for the necessary inputs
to be provided (by selection or on forms) and they display or output results. The top level specification
describes what functions are available, shows through their signatures what inputs are needed and what
results will be returned, and defines what preconditions need to be checked. All that needs to be done
is the design of the graphical part, the definition of helpful messages when preconditions are violated,
and perhaps the design of convenient output formats for extensive result values. There seems in practice
little point in trying to specify these aspects, especially the graphical, visual ones.
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A RSL Syntax

A.1 Conventions

XY X followed by Y

X|Y XorY

[X] X or empty

{X} a possibly empty sequence of X’s

A.2 Changes from RSL Book

with_class_expr added

forall removed

“ =7 added

prefix “—” and “4+” added; infix “==" added
comments allowed wherever white space allowed
schemes cannot be embedded

test_case_decl added

A.3 Modules and Declarations

module ::=
[fileid {“)” file.id} ] scheme scheme_def
| [filedd {“ file.id}] object object_def
| [filedd {¢ fileid}] theory theory_def
| [filedd {¢” fileid}] devt_relation devt_relation_def

object object_def {“” object_def}
type type_def {¢” type_def}

value value_def {¢,” value_def}
variable variable_def {¢,” variable_def}
channel channel_def {“,” channel def}

axiom axiom_def {“,” axiom_def}
test_case test_case_def {“,” test_case_def}

scheme_def ::= id [ “(” object_def {“,” object_def} “)” ] “=" class_expr

object_def := id [ “[” typing {“,” typing} “]”] «” class_expr
type_def ::=
id
| id “==" variant {“|” variant}
| id “=” (type-name | “_7") “|” (type-name | “_7) {“|” (type-name | “_")}
| id “:” component_kind {component_kind}
|

id “=" type_expr

object_decl
type_decl
value_decl
variable_decl
channel _decl
axiom_decl
test_case_decl

sort_def
variant_def
union_def
short_record_def
abbreviation_def
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variant == (id_orop | “_”) [“(” component kind {

component_kind ::= [id-or_op

value_def ::=
typing

formal function_application ::=
value-id “(” [binding {“,” binding}] “)” {“(” [binding {*,” binding}] “)”}

| prefix_op id
| id infix_op id

variable_def ::=

id “” type-expr [ “:=" pure-value_expr]
| id “,77 id {((,” id} M:” type_expr

channel def ::= id {“,” id} “” type_expr

axiom._def =:= [ “[” id

test_case_def == [“[” id ¢

A.4 Class Expressions

class_expr 1=
class {decl} end

extend class_expr with class_expr

hide defined_item {“,” defined_item} in class_expr

rename_pair} in class_expr
element-object_expr} in class_expr
object_expr} “)”]

with element-object_expr {

|
|
use rename_pair
I pair {
| object_expr {

scheme-name [ “(

rename_pair ::= defined_item for defined_item

defined_item ::= id_or.op [ “” type_expr]

A.5 Object Expressions

object_expr ::=
object-name

| array-object_expr “[” pure-value_expr {

single_typing “=" pure-value_expr

single_typing pure-restriction

single_typing formal function_application = value_expr [ pre_condition ]
single_typing formal function_application post_condition [ pre_condition ]

“17] readonly_logical-value_expr

]” ] value_expr

”

component _kind} “)” ]

id_or.op]

pure-value_expr} “]”

explicit_value_def
implicit_value_def
explicit_function_def
implicit_function_def

id_application
prefix_application
infix_application

single_variable_def
multiple_variable_def

basic_class_expr
extending_class_expr
hiding_class_expr
renaming_class_expr
with_class_expr
scheme_instantiation

element_object_expr
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| “[|” typing {¢,” typing} “” element-object_expr “|]” array.object_expr

| object_expr “{” rename_pair {“,” rename_pair} “}” fitting_object_expr

A.6 Type Expressions

type_expr 1=
Unit | Bool | Int | Nat | Real | Text | Char type_literal
| type-name
| type_expr “x” type_expr {“Xx” type_expr} product_type_expr
| type_expr“-set” | type_expr“-infset” set_type_expr
| type_expr“*” | type_expr““” list_type_expr
| type-expr (“m” | “m” ) type_expr map_type_expr
| type-expr (“=” | “=”) {access_desc} type_expr function_type_expr
| “{]” single_typing pure-restriction “|}” subtype_expr
| “(” type_expr “)” bracketed_type_expr
access_desc ::= access_mode access {“,” access}
access_mode ::= read | write | in | out
access 1=
variable_or_channel-name
| “{” [access {“” access}] “}” enumerated_access
| [qualification] any completed_access
| “{” access | pure-set_limitation “}” comprehended_access

A.7 Value Expressions

value_expr ::=
value_literal

| value_or_variable-name

| variable-name “” pre_name

| chaos | skip | stop | swap basic_expr

| “(” value_expr “” value_expr {“,” value_expr} ¢)” product_expr

| set_expr

| list_expr

| map_expr

| “N” lambda_parameter “«” value_expr function_expr

| list_or_map_or_function-value_expr

“(” [value_expr {“” value_expr}] “)” {“(” [value_expr {“” value_expr}] “)”}  application_expr

| (v | “3” | “3”) typing {“,” typing} restriction quantified_expr
| value_expr = value_expr [pre_condition ] equivalence_expr
| value_expr post_condition [ pre_condition ] post_expr
| value_expr “” type_expr disambiguation_expr
| “(” value_expr )” bracketed _expr
| infix_expr
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| prefix_expr
[ 07 1 “N2 | “f7 valueexpr “|” set limitation “}” comprehended_expr
| [qualification] initialise initialise_expr
| variable-name “:=” value_expr assignment_expr
| channel-name “?” input_expr
| channel-name “!” value_expr output_expr
| structured_expr
structured_expr ::=
local {decl} in value_expr end local_expr
| let let_def {“,” let_def} in value_expr end let_expr
| if logical-value_expr then value_expr if_expr

{elsif logical-value_expr then value_expr}
[else value_expr] end

case value_expr of pattern “—” value_expr {“,” pattern “—” value_expr} end case_expr
while logical-value_expr do unit-value_expr end while_expr
do unit-value_expr until logical-value_expr end until_expr
for list_limitation do unit-value_expr end for_expr

value_literal ::=

“« L) unit_literal
| true | false bool literal
| int_literal
| realliteral
| text literal
| charliteral

set_expr 1=

“{” readonly_integer-value_expr “..” readonly_integer-value_expr “}” ranged_set_expr
| “{” [ readonly-value_expr {“,” readonly-value_expr}] “}” enumerated _set_expr
| “{” readonly-value_expr “|” set_limitation“}” comprehended_set_expr

list_expr =

“” integer-value_expr “..” integer-value_expr “)” ranged _list_expr
| (" [value_expr {“,” value_expr}] “)” enumerated _list_expr
| “” value_expr “” list_limitation “)” comprehended list_expr

set_limitation ::= typing {“,” typing} [restriction]

list_limitation ::= binding in readonly_list-value_expr [restriction ]
restriction ::= “«” readonly_logical-value_expr
map_expr ::=
“[” [value_expr_pair {“” value_expr_pair}] “]” enumerated _map_expr
| “[” value_expr_pair “|” set_limitation “]” comprehended _map_expr
value_expr_pair ::= readonly-value_expr “~” readonly-value_expr
lambda_parameter ::= “(” [typing {“,” typing}] “)” | single_typing
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pre_condition ::= pre readonly_logical-value_expr
post_condition ::= [as binding] post readonly_logical-value_expr

infix_expr ::=
Value_expr (“l]” | “H” | “||” | “H” | “;7’) Value_expr
| logical-value_expr (“=7 | “v” | “A”) logical-value_expr
| value_expr infix_op value_expr

prefix_expr ::=
“~" logical-value_expr
| “O0” readonly_logical-value_expr
| prefix_op value_expr

let_def ::=
typing
| let_binding “=" value_expr
| single_typing restriction

”

let_binding ::=
binding
| pure_value-name “(” inner_pattern {“,” inner_pattern} )”

| a(;a [inner_pattern {u;a inner_pattern}] u)n [u/\n inner_pattern]

A.8 Bindings

binding ::= id-or_op | “(” binding “” binding {“,” binding} “)”

A.9 Typings
typing ::= binding {“,” binding} “:” type_expr

single_typing ::= binding “:” type_expr

A.10 Patterns

pattern ::=
value_literal

pure_value-name
[{3}]

W

|

|«

| “(” inner_pattern inner_pattern {“,” inner_pattern} «)”
| “w
|

W
b
pure_value-name “(” inner_pattern {“” inner_pattern} ¢)”

“(” [inner_pattern {“,” inner_pattern}] “)” [ “™” inner_pattern]

stmt_infix_expr
axiom_infix_expr
value_infix_expr

axiom _prefix_expr
universal_prefix_expr
value_prefix_expr

explicit_let
implicit_let

record_pattern
list_pattern

wildcard_pattern
product_pattern
record_pattern
list_pattern
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inner_pattern ::=

value literal
| id-or_op
| «” wildcard_pattern
| “(” inner_pattern “” inner_pattern {“,” inner_pattern} )” product_pattern
| pure_value-name “(” inner_pattern {“,” inner_pattern} “)” record_pattern
| “(” [inner_pattern {“,” inner_pattern}] “)” [“"” inner_pattern | list_pattern
| “=” pure_value-name equality_pattern
A.11 Names
name ::= [qualification] (id | “(” op “)”)
qualification ::= element-object_expr “.”
A.12 Identifiers and Operators
id_or_op ::=id | op
op ::= infix_op | prefix_op
infix op :=
£(=’7 | “#” | “:=37 | “>” | “<77 | “>77 | £(<’7 | “37’ | “C” | “D” | “C” | “E” | ((g”
| £(+” | “_» | “\” | [{3ab}) | Mu77 | M.'.” |_“*” |_M/” | “on | Mﬂ” | “%7 -
prefix op ::= “=” | “4+” | abs | int | real | card | len | inds | elems | hd | t]1 | dom | rng

A.13 Theories and Development Relations

theory_def ::= id “” axiom [theory_axiom {“, theory_axiom}] end
devt_relation_def ::= id “(” id for id “)” “” theory_expr
theory_axiom ::= [ “[” id “]” ] theory_expr

theory_expr ::=

in class_expr “F” theory_expr class_scope_expr
“” class_expr “<” class_expr implementation_relation
“” element-object_expr “C” element-object_expr implementation_expr

|

|

| readonly_logical-value_expr
| “(” theory_expr “)”
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B Symbols and Keywords

B.1

ASCII Versions of RSL Symbols

B.2 RSL Keywords

| Sym | ASCII || Sym | ASCII || Sym | ASCII

X >< * -list e -inflist
— -> = -"=> . -m->
- | -"m—> N <>
A /\ \Y \/ = =>
Y all = exists . -
O | always = is # “=
< <= > >= T *ok
€ isin ¢ “isin C <<
C <<= D) >> D >>=
U union N inter t 1
( <. ) D> - +>
| || i ++ I =1
I [~ A -\ ° #
F |- = = c [=

Bool class initialise | stop

Char do int swap

Int dom len test_case

Nat elems let then

Real else local tl

Text elsif object true

Unit end of type

abs extend | out until

any false post use

as for pre value

axiom hd read variable

card hide real while

case if rng with

channel | in scheme write

chaos inds skip

theory and devt_relation are also keywords for theories and development relations respectively.
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